Molina Clinical Policy Measurement of Carotid Intima-Media Thickness for Prediction of Clinical Vascular Events: Policy No. 235

MOLINA' HEALTHCARE

Last Approval: 10/13/2021 Next Review Due By: October 2022

DISCLAIMER

This Molina Clinical Policy (MCP) is intended to facilitate the Utilization Management process. Policies are not a supplementation or recommendation for treatment; Providers are solely responsible for the diagnosis, treatment and clinical recommendations for the Member. It expresses Molina's determination as to whether certain services or supplies are medically necessary, experimental, investigational, or cosmetic for purposes of determining appropriateness of payment. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that this service or supply is covered (e.g., will be paid for by Molina) for a particular Member. The Member's benefit plan determines coverage – each benefit plan defines which services are covered, which are excluded, and which are subject to dollar caps or other limits. Members and their Providers will need to consult the Member's benefit plan to determine if there are any exclusion(s) or other benefit limitations applicable to this service or supply. If there is a discrepancy between this policy and a Member's plan of benefits, the benefits plan will govern. In addition, coverage may be mandated by applicable legal requirements of a State, the Federal government or CMS for Medicare and Medicaid Members. CMS's Coverage Database can be found on the CMS website. The coverage directive(s) and criteria from an existing National Coverage Determination (NCD) or Local Coverage Determination (LCD) will supersede the contents of this MCP and provide the directive for all Medicare members. References included were accurate at the time of policy approval and publication.

OVERVIEW

Ultrasonographic measurement of carotid intima-medial (also called intimal-medial or intima-media) thickness (CIMT) refers to the use of B-mode ultrasound to determine the thickness of the two innermost layers of the carotid artery wall, the intima and the media. Ultrasonographic measurement of CIMT has been examined as a screening test for progression of atherosclerosis and is proposed for use in identifying and monitoring coronary heart disease. CIMT is performed on the common carotid artery on both sides of the neck and the measurements of the intima and the media thickness are recorded. This noninvasive test is performed by scanning with high-resolution B mode ultrasonography and using computer enhancement and analysis to determine the thickness of the intima and media of the carotid artery. The results evaluate for any thickening or signs of anatomical changes from early atherosclerotic disease. 4-6

COVERAGE POLICY

Measurement of carotid intima-media thickness for prediction of clinical vascular events **is considered experimental, investigational and unproven** due to insufficient evidence in the peer reviewed medical literature that that have not established safety, efficacy and effect on net health outcomes.

DOCUMENTATION REQUIREMENTS. Molina Healthcare reserves the right to require that additional documentation be made available as part of its coverage determination; quality improvement; and fraud; waste and abuse prevention processes. Documentation required may include, but is not limited to, patient records, test results and credentials of the provider ordering or performing a drug or service. Molina Healthcare may deny reimbursement or take additional appropriate action if the documentation provided does not support the initial determination that the drugs or services were medically necessary, not investigational or experimental, and otherwise within the scope of benefits afforded to the member, and/or the documentation demonstrates a pattern of billing or other practice that is inappropriate or excessive.

SUMMARY OF MEDICAL EVIDENCE 1-3,7,8

There is insufficient published evidence to assess the role of carotid intima-media thickness measurement for the prediction of clinical vascular events and/or the impact on health outcomes or patient management. There are no randomized clinical trials in the published literature that directly test the theory that carotid or femoral IMT measurements result in improved patient outcomes, and no specific guidance on how measurements of carotid IMT should be incorporated into risk assessment and risk management. The current published literature consists of several systematic reviews, meta-analyses, case series, and large longitudinal cohort studies.

A very large cohort study called IMPROVE (2012) compared the performance of several measures of carotid intimamedia thickness (C-IMT) as predictors of cardiovascular events (CVEs), and investigated whether they add to the predictive accuracy of Framingham risk factors (FRFs). The study was carried out in 5 European countries. A total of 3,703 subjects (median age 64.4 years; 48% men) were followed-up for a median of 36.2 months, and 215 suffered a first CVE (incidence: 19.9/1,000 person-years). All measures of C-IMT and the interadventitia common

Molina Clinical Policy Measurement of Carotid Intima-Media Thickness for Prediction of Clinical Vascular Events: Policy No. 235

MOLINA* HEALTHCARE

Last Approval: 10/13/2021 Next Review Due By: October 2022

carotid artery diameter (ICCAD) were associated with the risk of CVEs, after adjustment for FRFs and therapies (all p < 0.005). The average of 8 maximal IMT measurements (IMT(mean-max)), alone or combined with ICCAD, classified events and non-events better than the common carotid mean IMT (net reclassification improvement [NRI]: +11.6% and +19.9%, respectively; both p < 0.01). Compared with classification based on FRFs alone, the NRI resulting from the combination of FRFs+ICCAD+IMT(mean-max) was +12.1% (p < 0.01). The presence of at least 1 plaque (maximum IMT >1.5 mm) performed significantly worse than composite IMTs that incorporated plaques (p < 0.001). Adjusted Kaplan-Meier curves showed that individuals with a FRS = 22.6% (cohort average), and both IMT(mean-max) and ICCAD above the median, had a 6.5% risk to develop a CVE over 3 years versus a 3.4% risk for those with the same FRS, and both IMT(mean-max) and ICCAD below the median. The authors concluded that a risk stratification strategy based on C-IMT and ICCAD as an adjunct to FRFs is a rational approach to prevention of cardiovascular disease.⁷

In a large randomized controlled trial of 984 participants data was analyzed from the Measuring Effects on Intima-Media Thickness: An Evaluation of Rosuvastatin (METEOR) study, which showed that rosuvastatin attenuated the rate of change of carotid intima-media thickness (CIMT). In this post hoc analysis, duplicate baseline ultrasound images from the far wall of the left and right common carotid arteries were used for the evaluation of the echolucency of the carotid intima-media, measured by grey-scale median (GSM) on a scale of 0-256. Low GSM values reflect echolucent, whereas high values reflect echogenic structures. The relationship between baseline GSM and cardiovascular risk factors was evaluated using linear regression models. RESULTS: Mean baseline GSM (± SD) was 84 ± 29. Lower GSM of the carotid intima-media was associated with older age, high body mass index (BMI) and low levels of high-density lipoprotein cholesterol (HDL-C) [beta -4.49, 95% confidence interval (CI) -6.50 to -2.49; beta -4.51, 95% CI -6.43 to -2.60; beta 2.45, 95% CI 0.47 to 4.42, respectively]. Common CIMT was inversely related to GSM of the carotid intima-media (beta -3.94, 95% CI -1.98 to -5.89). Older age, high BMI and low levels of HDL-C are related to echolucency of the carotid intima-media. The authors concluded that echolucency of the carotid intima-media may be used as a marker of cardiovascular risk profile to provide more information than thickness alone.⁸

In the Tromsø Study subjects were 1307 men and 1436 women who participated in a longitudinal population-based study with ultrasound examination of the right carotid artery at baseline and after 13 years of follow-up. Total cholesterol, high-density lipoprotein cholesterol, blood pressure, body mass index, and information about smoking habits, prevalent diabetes, and cardiovascular disease were obtained at baseline. Carotid atherosclerosis was assessed as TPA and mean IMT of plaque-free segments of the common carotid artery. Associations between z-scores of risk factors and carotid atherosclerosis were assessed in multiple linear regression models. RESULTS: In multivariable models, total cholesterol, systolic blood pressure, and smoking were stronger predictors of follow-up TPA than of IMT, whereas sex and age were stronger predictors of IMT. Total cholesterol (standardized β =0.081), systolic blood pressure (standardized β =0.062), and smoking (standardized β =0.107) were significant predictors of Δ TPA, whereas only total cholesterol (standardized β =0.084) was an independent predictor of Δ IMT. The variance explained by traditional cardiovascular risk factors was somewhat greater for TPA than for IMT. The authors concluded that the cardiovascular risk factors total cholesterol, smoking, and systolic blood pressure were stronger long-term predictors of TPA and TPA progression than for IMT and IMT progression.

The systematic reviews and meta-analyses investigated the ability of CIMT measurement to identify coronary artery disease in asymptomatic patients and predict first-time myocardial infarction (MI) or first-time stroke. The inclusion criteria varied for the studies included in these reviews. The results consistently reported that CIMT is a predictor of cardiovascular risk but the addition of CIMT measurement did not significantly improve risk prediction over conventional cardiovascular risk factors. In addition, most of the reviewed studies were conducted in the research setting and therefore cannot be used to describe conclusions on the applicability of CIMT measurement in the clinical setting for asymptomatic patients.^{2,10-14}

Professional Society Guidelines

The American College of Cardiology Foundation/American Heart Association guideline for the assessment of CVD risk does not recommend the routine use of CIMT in clinical practice for CVD risk assessment.¹⁵⁻¹⁸

Molina Clinical Policy

Measurement of Carotid Intima-Media Thickness for Prediction of Clinical Vascular Events: Policy No. 235

Last Approval: 10/13/2021

Next Review Due By: October 2022

The United States Preventive Services Task Force (USPSTF) 2009 Guidelines conclude that the current evidence is insufficient to assess the balance of benefits and harms of using the nontraditional risk factors such as CIMT to screen asymptomatic men and women with no history of CAD to prevent CHD events. The 2010 American College of Cardiology Foundation/American Heart Association guidelines for the assessment of CVD risk in asymptomatic adults give CIMT a level IIa recommendation for cardiovascular risk evaluation in intermediate risk patients. No recommendations were made regarding the use of CIMT in low-risk patients, high-risk patients, or patients with established CVD.³

SUPPLEMENTAL INFORMATION

None.

CODING & BILLING INFORMATION

CPT Codes

CPT	Description
93895	Quantitative carotid intima media thickness and carotid atheroma evaluation, bilateral
0126T	Common carotid intima-media thickness (IMT) study for evaluation of atherosclerotic burden or coronary heart disease risk factor assessment

HCPCS Codes - N/A

CODING DISCLAIMER. Codes listed in this policy are for reference purposes only and may not be all-inclusive. Deleted codes and codes which are not effective at the time the service is rendered may not be eligible for reimbursement. Listing of a service or device code in this policy does guarantee coverage. Coverage is determined by the benefit document. Molina adheres to Current Procedural Terminology (CPT®), a registered trademark of the American Medical Association (AMA). All CPT codes and descriptions are copyrighted by the AMA; this information is included for informational purposes only. Providers and facilities are expected to utilize industry standard coding practices for all submissions. When improper billing and coding is not followed, Molina has the right to reject/deny the claim and recover claim payment(s). Due to changing industry practices, Molina reserves the right to revise this policy as needed.

APPROVAL HISTORY

10/13/2021 Policy reviewed, no changes to criteria, updated references.

9/18/2019, 9/16/2020 Policy reviewed, no changes.

7/10/2018 Policy reviewed, no changes to criteria; updated Summary of Medical Evidence section and references.

12/16/2015, 9/15/2016, 6/22/2017 Policy reviewed, no changes.

2/2/2015 New policy.

REFERENCES

Government Agency

- Centers for Medicare and Medicaid Services (CMS). Medicare coverage database. http://www.cms.gov/mcd/search.asp. Accessed September 24, 2021.
- Helfand M, Buckley DI, Freeman M, et al. Emerging risk factors for coronary heart disease: A summary of systematic reviews conducted for the U.S. Preventive Services Task Force. Ann Intern Med. 2009 Oct 6;151(7):496-507. doi: 10.7326/0003-4819-151-7-200910060-00010. Accessed September 24, 2021.
- United States Preventive Services Task Force (USPSTF). Cardiovascular disease: Risk assessment with nontraditional risk factors. https://www.uspreventiveservicestaskforce.org/uspstf/document/RecommendationStatementFinal/cardiovascular-disease-screening-using-nontraditional-risk-assessment. Updated July 10, 2018. Accessed September 24, 2021.

Other Peer Reviewed Publications

- Hayes. Health technology assessment: Measurement of carotid intima-media thickness for prediction of clinical vascular events. https://evidence.hayesinc.com. Published July 13, 2009. Updated July 23, 2013. Archived August 13, 2014. Accessed September 24, 2021. Registration and login required.
- 5. de Groot E, Duivenvoorden R. Carotid intima-media thickness. http://www.uptodate.com. Updated May 23, 2019. Accessed September 24, 2021. Registration and login required.
- 6. AMR Peer Review. Policy reviewed on March 27, 2018 by an Advanced Medical Reviews (AMR) practicing, board-certified physician in the areas of Cardiovascular Disease, Interventional Cardiology.

Molina Clinical Policy Measurement of Carotid Intima-Media Thickness for Prediction of

Clinical Vascular Events: Policy No. 235

Last Approval: 10/13/2021

Next Review Due By: October 2022

Peer Reviewed Publications

- 7. Baldassarre D, Hamsten A, Veglia F, et al. Measurements of carotid intima-media thickness and of interadventitia common carotid diameter improve prediction of cardiovascular events: Results of the IMPROVE (Carotid Intima Media Thickness [IMT] and IMT-Progression as Predictors of Vascular Events in a High Risk European Population) study. J Am Coll Cardiol. 2012 Oct 16;60(16):1489-99. doi: 10.1016/j.jacc.2012.06.034. Accessed September 24, 2021.
- Peters SA, Lind L, Palmer MK, Grobbee DE, et al. Increased age, high body mass index and low HDL-C levels are related to an echolucent carotid intima-media: The METEOR study. J Intern Med. 2012 Sep;272(3):257-66. doi: 10.1111/j.1365-2796.2011.02505.x. Accessed September 24, 2021.
- Herder M, Johnsen SH, Arntzen KA, Mathiesen EB. Risk factors for progression of carotid intima-media thickness and total plaque area: a 13-year follow-up study: The Tromsø Study. Stroke. 2012 Jul;43(7):1818-23. doi: 10.1161/STROKEAHA.111.646596. Accessed September 24, 2021.
- 10. Den Ruijter, HM, Peters SA, Anderson TJ, et al. Common carotid intima-media thickness measurements in cardiovascular risk prediction: a meta-analysis. JAMA. 2012 Aug 22;308(8):796-803. doi: 10.1001/jama.2012.9630. Accessed September 24, 2021.
- Lorenz MW, Polak JF, Kavousi M, et al. Carotid intima-media thickness progression to predict cardiovascular events in the general population (the PROG-IMT collaborative project): A meta-analysis of individual participant data. Lancet. 2012 Jun 2;379(9831):2053-62. doi: 10.1016/S0140-6736(12)60441-3. Accessed September 24, 2021.
- 12. Mookadam F, Moustafa SE, Lester SJ, Warsame T. Subclinical atherosclerosis: evolving role of carotid intima-media thickness. Prev Cardiol. Fall 2010;13(4):186-97. doi: 10.1111/j.1751-7141.2010.00072.x. Accessed September 24, 2021.
- 13. Peters SA, den Ruijter HM, Bots ML, Moons KG. Improvements in risk stratification for the occurrence of cardiovascular disease by imaging subclinical atherosclerosis: a systematic review. Heart. 2012 Feb;98(3):177-84. doi: 10.1136/heartjnl-2011-300747. Accessed September 24, 2021.
- 14. van den Oord, SC, Sijbrands, EJ, ten Kate, GL, et al. Carotid intima-media thickness for cardiovascular risk assessment: systematic review and meta-analysis. Atherosclerosis. 2013 May;228(1):1-11. doi: 10.1016/j.atherosclerosis.2013.01.025. Accessed Sept. 24, 2021.

National and Specialty Organizations

- Goff DC, Lloyd-Jones DM, Bennett G, Coady S, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129:S49–S73. https://doi.org/10.1161/01.cir.0000437741.48606.98. Accessed September 24, 2021.
- 16. American Heart Association (AHA). Position statement on state efforts to mandate coronary arterial calcification and carotid intima media thickness screenings among asymptomatic adults. http://www.heart.org/idc/groups/heart-public/@wcm/@adv/documents/downloadable/ucm_437479.pdf. Published March 7, 2012. Accessed September 24, 2021.
- 17. Polak JF, Person SD, Wei GS, et al. Segment-specific associations of carotid intima-media thickness with cardiovascular risk factors: The Coronary Artery Risk Development in Young Adults (CARDIA) Study. American Heart and Stroke Association. Stroke. 2010 Jan;41(1):9-15. doi: 10.1161/STROKEAHA.109.566596. Accessed September 24, 2021.

Other Peer Reviewed and Professional Organization Publications (used in the development of this policy)

- 18. Seo WK, Kim YJ, Lee J, et al. Design and rationale of the intima-medial thickness sub-study of the prevention of cardiovascular events in ischemic stroke patients with high risk of cerebral hemorrhage (PICASSO-IMT) Study. J Stroke Cerebrovasc Dis. 2017 Sep;26(9):1892-1898. doi: 10.1016/j.jstrokecerebrovasdis.2017.06.035. Accessed September 24, 2021.
- 19. Polak JF, O'Leary DH. Carotid intima-media thickness as surrogate for and predictor of CVD. Glob Heart. 2016 Sep;11(3):295-312.e3. doi: 10.1016/j.gheart.2016.08.006. Accessed September 24, 2021.
- Chiavaroli L, Mirrahimi A, Ireland C, et al. Cross-sectional associations between dietary intake and carotid intima media thickness in type 2 diabetes: baseline data from a randomised trial. BMJ Open. 2017 Mar 22;7(3):e015026. doi: 10.1136/bmjopen-2016-015026. Accessed September 24, 2021.

APPENDIX

Reserved for State specific information (to be provided by the individual States, not Corporate). Information includes, but is not limited to, State contract language, Medicaid criteria and other mandated criteria.