Zolgensma (onasemnogene abeparvovec): Policy No. 348

Last Approval: 1/4/2023

Next Review Due By: December 2023



## **DISCLAIMER**

This Molina Clinical Policy (MCP) is intended to facilitate the Utilization Management process. Policies are not a supplementation or recommendation for treatment; Providers are solely responsible for the diagnosis, treatment and clinical recommendations for the Member. It expresses Molina's determination as to whether certain services or supplies are medically necessary, experimental, investigational, or cosmetic for purposes of determining appropriateness of payment. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that this service or supply is covered (e.g., will be paid for by Molina) for a particular Member. The Member's benefit plan determines coverage – each benefit plan defines which services are covered, which are excluded, and which are subject to dollar caps or other limits. Members and their Providers will need to consult the Member's benefit plan to determine if there are any exclusion(s) or other benefit limitations applicable to this service or supply. If there is a discrepancy between this policy and a Member's plan of benefits, the benefits plan will govern. In addition, coverage may be mandated by applicable legal requirements of a State, the Federal government or CMS for Medicare and Medicaid Members. CMS's Coverage Database can be found on the CMS website. The coverage directive(s) and criteria from an existing National Coverage Determination (NCD) or Local Coverage Determination (LCD) will supersede the contents of this MCP and provide the directive for all Medicare members. References included were accurate at the time of policy approval and publication.

## **OVERVIEW**

Spinal Muscular Atrophy (SMA) is an autosomal recessive hereditary disease characterized by progressive degeneration of the spinal cord and brainstem motor neurons, resulting in hypotonia, atrophy of skeletal muscles, and generalized weakness (Zhang et al. 2020). It is estimated that SMA affects 1 in 8,000 to 10,000 people worldwide (Genetics Home Reference, 2019; Keinath et al. 2021). SMA is caused by a defect in the survival motor neuron 1 (SMN1) gene, with nearly all cases resulting from deletion, rearrangement, or mutation in SMN1, which significantly lowers levels of a functioning SMN protein, resulting in a swift loss of motor neurons, the specialized cells that control muscle contraction. The majority SMA patients have a homozygous deletion of exon 7 of the SMN1 gene on chromosome 5q13 but possess at least one copy of the SMN2 gene. Although approximately 95% of patients have the same homozygous deletion of the SMN1 gene, there is a significant variation in clinical presentation/phenotypes (Cure SMA, 2018). The presence of the SMN2 backup gene accounts for a significant proportion of the phenotypic variation in SMA. The clinical manifestations and disease severity of SMA are highly variable. Despite SMN2 produces a protein with poor function, the total number and function of SMN2 copies present are inversely correlated with phenotypic severity; a greater number of copies provides protection and reduces the severity of the disease. SMA is generally divided into sub-types (SMA types 0, 1, 2, 3, and 4) based on disease onset and severity, usually correlating to levels of SMN protein. The most severe form of SMA Type I (Werdnig-Hoffman disease) typically results in death or the need for permanent breathing support by 2 years of age without treatment (MDA.org). An overview of the different subtypes is available in the "Supplemental Information" section of the policy (Table 1). The life expectancy of SMA patients is inversely related to the age of onset, with higher mortality rates associated with early disease onset. SMA is associated with multiple clinical problems that affect respiratory, nutritional, orthopedic, rehabilitative, emotional, and social aspects of the disease. Prior to the approval of disease-modifying therapies, the focus of treatment has been on supportive care for symptomatic and related clinical problems that develop with age, including respiratory, nutritional, and orthopedic management (i.e., pulmonary treatments including airway clearance and, if needed, respiratory support; improving sleep quality through nocturnal noninvasive ventilation (often with bi-level positive pressure); optimization of nutritional status; maintenance of fitness and endurance through regular exercise; and occupational therapy to help with the management of truncal and limb weakness). The leading cause of morbidity and mortality in SMA types 1 and 2 is respiratory failure.

**Zolgensma** (onasemnogene abeparvovec; formerly AVXS-101) is the first gene therapy for a neuromuscular disease and the first FDA-approved gene replacement therapy for SMA. Gene therapy uses a viral vector, non-replicating recombinant adeno-associated virus serotype 9 (AAV9) which crosses the blood-brain barrier, to deliver a functional copy of the SMN1 gene and restore production of a working and full-length protein in motor nerve cells. Gene therapy offers the opportunity for single dose treatment of the disease and targets the root cause of SMA by delivering a fully functional SMN gene into target motor neuron cells. Zolgensma uses the viral vector, AAV9, to deliver the missing SMN gene and because AAV9 is a naturally occurring virus, some pediatric patients may have antibodies against this virus, causing these patients to be ineligible for treatment. It is reported that in 150+ patients treated with Zolgensma, only 5% of screened patients up to 5 years old excluded due to AAV9 antibody titers greater than 1:50 (Novartis 2019). The labeling includes a black box warning of acute serious liver injury, acute liver failure, and elevated aminotransferases. Other adverse events (AEs) also include thrombocytopenia, elevated blood

## Zolgensma (onasemnogene abeparvovec): Policy No. 348

Last Approval: 1/4/2023

Next Review Due By: December 2023



creatine phosphokinase, elevated troponin, croup, lethargy, and hypercalcemia. Zolgensma was approved by the FDA in 2019 for the treatment of children under the age of two who have SMA and have bi-allelic mutations in SMN1. The indication includes all SMA patients; however, there is limited published data and evidence of efficacy on older children, adults,

Studies defining the appropriate patient population for Zolgensma are currently ongoing and the patient selection criteria will be evaluated and revised as clinical trial results and evidence become available. At this time, there are no direct clinical trials or comparative data available between the FDA-approved treatments Spinraza (nusinersen), Evrysdi (risdiplam), and Zolgensma.

## **COVERAGE POLICY**

Zolgensma (onasemnogene abeparvovec) gene therapy for the treatment of SMA may be considered medically necessary when ALL of the following clinical criteria are met:

- Prescribed by, or in consultation with, a board-certified pediatric neurologist, neuromuscular specialist or neurologist with experience in the diagnosis and management of SMA; AND
- 2. Definitive diagnosis of SMA Type 1

#### AND

- 3. Genetic testing/newborn screening confirms bi-allelic mutations (chromosome 5q related deletion or point mutations) in the survival motor neuron 1 (SMN1) gene documented by the presence of **ONE** of the following:
  - a. Homozygous deletions of SMN1 gene (e.g., homozygous deletion of exon 7 at locus 5q13); OR
  - b. Homozygous mutation in the SMN1 gene (e.g., biallelic mutations of exon 7); OR
  - Compound heterozygous mutation in the SMN1 gene [e.g., deletion of SMN1 exon 7 (allele 1) and mutation of SMN1 (allele 2)]

#### AND

4. Three or fewer copies of SMN2 gene

#### AND

Less than 2 years of age at time of administration of Zolgensma

For premature neonates: Full-term gestational age must be reached. Documentation required. Informational Note: It is not recommended to administer Zolgensma to premature neonates prior to attaining the full-term gestational age because concurrent corticosteroid treatment may impair neurodevelopment. Delay infusion until full-term gestational age has been attained.

#### AND

6. Member is less than 13.5 kg. Submit current weight (in kilograms) for determination of dosage. Informational Note: In the consideration of the currently available data and existing treatment alternatives, it is recommended that gene replacement therapy with Zolgensma for patients with a body weight >13.5 kg only be performed under a more rigorous protocol with continuous monitoring of safety and efficacy which might be best achieved in a clinical trial setting (Consensus statement 10: European ad-hoc consensus statement on gene replacement therapy for SMA).

#### **AND**

- 7. Confirmation/attestation of member's current and previous SMA treatments:
  - a. Member is <u>not</u> currently enrolled in SMA clinical trials and is ineligible for clinical trial enrollment.

    NOTE: Members eligible for, or currently enrolled in, SMA clinical trial enrollment will not be authorized. Individual should receive treatment and monitoring per clinical trial protocols in place by the applicable Institutional Review Board.

#### **AND**

b. Member has not previously received gene therapy, or Zolgensma;

#### AND

c. Zolgensma will not be used in combination with an investigational treatment or alternative SMA therapy (e.g., Spinraza, Evrysdi). Treatment must be discontinued prior to infusion of Zolgensma.

**Molina Clinical Reviewer:** Review clinical history and profile; terminate current authorizations for SMN modifying therapy upon approval of Zolgensma.

## Zolgensma (onasemnogene abeparvovec): Policy No. 348

Last Approval: 1/4/2023

Next Review Due By: December 2023

# MOLINA' HEALTHCARE

#### AND

- 8. Baseline motor function assessment using at least **ONE** of the following assessment tools appropriate for participant age and motor function does not indicate advanced SMA at baseline (e.g., complete paralysis of limbs; permanent ventilation support):
  - a. CHOP INTEND: Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders
  - b. HFMS: Hammersmith Functional Motor Scale
  - c. HFMSE: Hammersmith Functional Motor Scale Expanded
  - d. Hammersmith Infant Neurologic Exam Part 2 (HINE-2)
  - e. 6-minute walk test (6MWT)
  - f. Upper Limb Module (ULM) score (non-ambulatory patients)

Refer to 'Supplemental Information' section (Table 2) for additional information on neurological function assessments for motor development. Measures that have been developed and validated specifically for SMA populations include CHOP INTEND, HFMS, HFMSE.

#### AND

- 9. Baseline (pre-treatment) laboratory tests within normal limits. Required within 30 days of request.
  - a. Liver function: normal clinical exam, total bilirubin, and prothrombin time; AST and ALT levels <2 x</li>
     Upper Limit of Normal; AND
  - b. Platelet count; AND
  - c. Troponin-I.

#### AND

10. Baseline anti-AAV9 antibody titers **less than or equal to** 1:50 prior to infusion, measured using an enzymelinked immunosorbent assay (ELISA). Documentation required.

\*The safety and efficacy of Zolgensma patients with anti-AAV9 antibody titers above 1:50 have not been evaluated.

## **AND**

- 11. Member does not have advanced SMA, including but not limited to ANY of the following:
  - a. Complete paralysis of limbs; or
  - b. Invasive ventilatory support (tracheostomy); or
  - c. Non-invasive ventilator support (e.g., CPAP, BPAP) for greater than 16 hours/day

#### **AND**

12. Member will receive systemic corticosteroids (equivalent to oral prednisolone at 1 mg/kg) prior to and following administration of Zolgensma in accordance with the FDA approved Zolgensma labeling

## **CONTINUATION OF THERAPY**

Zolgensma is indicated to be dosed and infused one time only. Repeat treatment or re-administration of a dose is not supported by labeling or compendia and is not considered medically necessary.

The safety and effectiveness of repeat administration have not been evaluated. The use of Zolgensma in patients with advanced SMA (e.g., complete paralysis of limbs, permanent ventilator dependence) has not been evaluated. (Prescribing Information, 2022).

## LIMITATIONS AND EXCLUSIONS

There are no contraindications listed in the manufacturer's labeling. The following are considered **exclusions** based on insufficient evidence:

- 1. Known allergy or hypersensitivity to prednisolone or other glucocorticosteroids or their excipients
- 2. Concomitant use of any of the following: drugs for treatment of myopathy or neuropathy, agents used to treat diabetes mellitus, or ongoing immunosuppressive therapy, plasmapheresis, immunomodulators such as adalimumab, or immunosuppressive therapy within 3 months of planned Zolgensma therapy (SPR1NT)
- 3. Concurrent therapy with an investigational or FDA approved therapies, including but not limited to: Spinraza (nusinersen), Evrysdi (risdiplam)

**NOTE:** There are insufficient data to render definitive clinical decisions regarding the risks and benefits of adding Zolgensma to ongoing Spinraza or Evrysdi therapy; therefore, treatment must be discontinued prior to Zolgensma therapy. Members who have not experienced sustained or substantial clinical benefit, or who are experiencing AEs, may be required to submit additional clinical information. Molina Clinical Reviewer may also consult with prescribing/treating physicians to determine if switching to Zolgensma therapy offers a greater probability of clinical benefit.

# Zolgensma (onasemnogene abeparvovec): Policy No. 348

Last Approval: 1/4/2023

Next Review Due By: December 2023



- 4. Clinically significant abnormalities in hematology or clinical chemistry parameters [i.e., GGT > 3X ULN, bilirubin ≥ 3.0 mg/dL, creatinine ≥ 1.8 mg/dL, Hgb < 8 or > 18 g/Dl; WBC > 20,000 per cm]
- 5. Active viral infection (includes human immunodeficiency virus [HIV] or positive serology for hepatitis B or C, or Zika virus)

The following are considered **experimental**, **investigational**, **and unproven** based on insufficient evidence:

- 1. Any indication other than those listed above
  - Based on the peer-reviewed medical literature the safety and effectiveness for indications other than the medically necessary indication listed above has not been established.
- 2. Prior treatment, or being considered for treatment, with other gene therapy
- 3. SMA Type 0 or 4: There is insufficient evidence to support safety and efficacy in SMA Type 0 or 4.
- 4. 2 years of age and older (FDA approved labeling, 2022)
- 5. Permanent ventilator dependence (FDA approved labeling, 2022)
  - NOTE: Permanently ventilated is defined by the need for continuous ventilator support (invasive or non-invasive ventilation) for more than 16 hours during a 24-hour period for at least 14 days without an acute, reversible illness, including: Invasive ventilation or tracheostomy; Pulse oximetry < 96% saturation; Use of non-invasive ventilation (BiPAP) beyond use for naps and nighttime sleep.)
- 6. Complete paralysis of limbs (FDA approved labeling, 2022)
- 7. Advanced Spinal Muscular Atrophy (FDA approved labeling, 2022)

**DURATION OF APPROVAL:** Infusion may be performed up to ONE MONTH from time of authorization OR until 2 years of age, whichever occurs first.

**QUANTITY LIMITATIONS: FDA approved dosing with one-time dose per lifetime.** Additional infusions of will not be authorized.

**DOSING CONSIDERATIONS:** The intravenous dosage is determined by patient body weight (in kilograms), with a recommended dose of 1.1 × 10<sup>14</sup> vector genomes (vg) per kg of body weight for pediatric patients and administered as an IV infusion over 60 minutes. Refer to the **Zolgensma Treatment Guide** for further dosing information.

Concomitant therapy: Beginning the day prior to Zolgensma infusion, oral prednisolone (1 mg/kg/day or equivalent) should be administered and continued for at least 30 days to help prevent hepatic toxicity. At the end of 30 days, clinically assess liver and test hepatic function (ALT, AST, total bilirubin, and prothrombin time [PT]); if unremarkable findings (normal clinical exam, total bilirubin, and PT, and ALT and AST concentrations <2 x ULN), taper prednisolone over 28 days. If evidence of hepatic impairment exists, continue oral prednisolone (1 mg/kg/day or equivalent) until AST/ALT <2 x ULN and all other assessments return to normal, then taper over 28 days. If unresponsive to corticosteroid therapy, consult expert.

## **ADMINISTRATION:**

- 1. Administered as a single, one-time (slow IV infusion only; over 60 minutes) by healthcare professionals experienced in the diagnosis and management of SMA.
- 2. Refer to MHI Policy & Procedure: Specialty Medication Administration Site of Care Policy: MHI Pharm 11

#### **MONITORING PARAMETERS:**

- Anti-AAV9 antibody testing at baseline (may re-test if anti-AAV9 antibody titers are reported >1:50)
- Liver function: Clinical exam, AST, ALT, total bilirubin, prothrombin time at baseline, weekly for the first month, then every other week for the second and third months; continue testing until results are unremarkable (normal clinical exam, total bilirubin and prothrombin time; AST and ALT levels <2 x ULN).
- Platelet count: Baseline, weekly for the first month, then every other week for the second and third months; continue testing until platelet count returns to baseline.
- Signs and symptoms of thrombotic microangiopathy (e.g., hypertension, bruising, decreased urine output, seizures).
- Troponin-I: Baseline, weekly for the first month, then monthly for the second and third months; continue testing until troponin-I level returns to baseline.

## Zolgensma (onasemnogene abeparvovec): Policy No. 348

Last Approval: 1/4/2023

Next Review Due By: December 2023



**DOCUMENTATION REQUIREMENTS.** Molina Healthcare reserves the right to require that additional documentation be made available as part of its coverage determination; quality improvement; and fraud; waste and abuse prevention processes. Documentation required may include, but is not limited to, patient records, test results and credentials of the provider ordering or performing a drug or service. Molina Healthcare may deny reimbursement or take additional appropriate action if the documentation provided does not support the initial determination that the drugs or services were medically necessary, not investigational, or experimental, and otherwise within the scope of benefits afforded to the member, and/or the documentation demonstrates a pattern of billing or other practice that is inappropriate or excessive.

## DRUG INFORMATION

**ROUTE OF ADMINISTRATION: Intravenous Infusion** 

**DRUG CLASS:** Gene Therapy, Adeno-Associated Virus

FDA-APPROVED USES: SMA

For the treatment of pediatric patients less than 2 years of age with SMA with bi-allelic mutations in the survival motor neuron 1 (SMN1) gene (FDA approved May 24, 2019).

#### Limitations of Use:

- The safety and effectiveness of repeat administration of Zolgensma have not been evaluated.
- The use of Zolgensma in patients with advanced SMA (e.g., complete paralysis of limbs, permanent ventilator dependence) has not been evaluated.

## **COMPENDIAL APPROVED OFF-LABELED USES: None**

RISK EVALUATION AND MITIGATION STRATEGY (REMS) / BOXED WARNING: Acute serious liver injury, acute liver failure and elevated aminotransferases. Patients with preexisting liver impairment may be at higher risk. Prior to infusion, assess liver function of all patients by clinical examination and laboratory testing [e.g., hepatic aminotransferases (AST and ALT), total bilirubin, and prothrombin time]. Administer systemic corticosteroid to all patients before and after Zolgensma infusion. Continue to monitor liver function for at least 3 months after infusion.

## Warnings/Precautions

- Thrombocytopenia: Monitor platelet counts before Zolgensma infusion, and weekly for the first month and then every other week for the second and third month until platelet counts return to baseline.
- Elevated Troponin-I: Monitor troponin-I before Zolgensma infusion, and weekly for the first month and then monthly for the second and third month until troponin-I levels return to baseline.

#### SUMMARY OF MEDICAL EVIDENCE

## Clinical Development Program Overview for Onasemnogene Abeparvovec-xii

| PHASE      | DESCRIPTION                                                                                                          | SMA TYPE                   | N  | STATUS                                                 |  |  |
|------------|----------------------------------------------------------------------------------------------------------------------|----------------------------|----|--------------------------------------------------------|--|--|
|            | Infants under 6 weeks (presymptomatic with a genetic diagnosis of SMA and 2 or 3 copies SMN2)                        |                            |    |                                                        |  |  |
| Phase<br>3 | SPR1NT: Pre-Symptomatic Study of Intravenous AVXS-101 in SMA for Patients with Multiple Copies of SMN2 (NCT03505099) | Type 1<br>Type 2<br>Type 3 | 44 | Completed<br>July 15, 2021                             |  |  |
|            | Infants under 6 months of age (SMA type I)                                                                           |                            |    |                                                        |  |  |
| Phase<br>1 | PIVOTAL: Gene Transfer Clinical Trial for SMA Type 1 (NCT02122952)                                                   | Type 1                     | 15 | Completed<br><u>Published</u>                          |  |  |
| Phase<br>4 | START: Long-Term Follow-up Study for Patients from AVXS-101-CL-101; NCT02122952 (NCT03421977)                        | Type 1                     | 15 | Ongoing Estimated Study Completion Date: December 2033 |  |  |

## Zolgensma (onasemnogene abeparvovec): Policy No. 348

Last Approval: 1/4/2023

Next Review Due By: December 2023



| Phase<br>3                                    | STR1VE-US: Gene Replacement Therapy Clinical Trial for Patients with SMA Type 1 (NCT03306277)            | Type 1           | 21 | Completed<br>Nov 12, 2019 |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------|----|---------------------------|
| Phase<br>3                                    | STR1VE-EU Single-Dose Gene Replacement Therapy Clinical Trial for Patients with SMA Type 1 (NCT03461289) | Type 1           | 30 | Completed<br>Sep 11, 2020 |
| Children up to 60 months of age (SMA Type II) |                                                                                                          |                  |    |                           |
| Phase<br>1                                    | STRONG: Study of Intrathecal Administration of AVXS-101 for SMA (NCT03381729)                            | Type 2<br>Type 3 | 27 | Completed<br>Nov 18, 2021 |

Pivotal studies defining an appropriate patient population are ongoing, therefore the patient selection criteria will be evaluated and revised as clinical trial results and evidence are published.

## Type 1 SMA

Clinical trials for the development of Zolgensma for symptomatic SMA Type 1 include the following trials (listed in the Table above) of four prospective cohort studies: two phase 1 dose-finding studies, two phase 3 confirmatory studies (STRIVE-US; STRIVE EU), and one long-term follow-up study (START).

FDA approval was based on a pooled analysis of the pivotal phase 1 trial (n=15) and STRIVE-US trial (n=21) with 2 copies of SMN2 with a data analysis cut off March 2019. Efficacy was established since survival, and achievement of developmental motor milestones such as sitting without support. Comparison of the results of the ongoing clinical trial to available natural history data of patients with infantile-onset SMA was the primary evidence for the effectiveness of Zolgensma.

**Pivotal Trial.** Zolgensma was studied in an open-label trial of 15 infants with SMA who had homozygous SMN1 exon 7 deletions. The patients were randomly assigned to receive either a single high-dose (n = 12) or a low-dose (n = 3) of onasemnogene abeparvovec intravenously. At 20 months, all 15 patients were alive and did not require permanent mechanical ventilation, whereas the historical control group's rate of survival without permanent ventilation was only 8%. Motor function improved in the high-dose cohort compared to the historical controls. In contrast to historical controls, a number of treated infants attained motor milestones such as sitting unassisted (n = 11), oral feeding (n = 11), rolling over (n = 9), and walking independently (n = 2). The authors concluded that in patients with SMA1, a single intravenous infusion of AAV vector containing DNA coding for SMN resulted in longer survival, superior achievement of motor milestones, and better motor function than in historical cohorts; however additional research is required to confirm the safety and efficacy of this gene therapy. [NCT02122952]

START: Long-Term Follow-Up Study (LTFU) (NCT03421977) is an ongoing, observational, follow-up study for continuous safety monitoring for 15 years in patients from the START phase 1 study (May 2014 through December 2017). Participants were symptomatic infants with SMA type 1 and 2 copies of SMN2 previously treated with an intravenous dose of Zolgensma (low dose, 6.7 × 10<sup>13</sup> vg/kg; or therapeutic dose, 1.1 × 10<sup>14</sup> vg/kg) in START. Thirteen of 15 original START patients are included in this analysis (n=13; low-dose cohort, n = 3; and therapeuticdose cohort, n = 10); 2 patients' families declined follow-up participation. Mendell et al. (2021) reported the results of this ongoing study to assess long-term safety (incidence of serious AEs) and durability of response (to determine if developmental milestones attained in the START phase 1 clinical trial were maintained and if new milestones were attained). The findings indicate that developmental milestones achieved in the phase 1 clinical trial were maintained and new milestones were gained. All 10 patients in the therapeutic-dose cohort survived and did not require continuous ventilation. The five-year extension study results of 13 patients found that all 10 patients in the high-dose group maintained previously acquired milestones without the need for permanent ventilation, while two patients achieved a new milestone of standing with assistance without the use of nusinersen. It is noted that 7 of the 13 patients later received concomitant nusinersen (all 3 patients in the low-dose cohort and 4 of the 10 patients in the therapeutic-dose cohort) to maximize benefit and not due to a decline in motor function or perceived regression. Six patients in the therapeutic-dose cohort were noted to have received no additional treatment for SMA other than Zolgensma more than four years after administration. The two patients in the therapeutic-dose cohort who met the new START LTFU milestones did not receive nusinersen at any time. The authors concluded that Zolgensma provides sustained and durable efficacy in patients for up to 6.2 years after administration. The anticipated outcomes of completed and ongoing phase 3 and 4 studies will further validate the efficacy and safety of Zolgensma.

## Zolgensma (onasemnogene abeparvovec): Policy No. 348

Last Approval: 1/4/2023

Next Review Due By: December 2023



The STR1VE-US and STR1VE-EU open-label studies provide additional evidence of efficacy (Day et al. 2021; Mercuri et al. 2021). STR1VE-US included 22 patients with infantile-onset SMA (mean age at enrollment 3.7 months) who could feed exclusively by mouth and did not require noninvasive ventilatory support at enrollment (Day et al. 2021); STR1VE-EU enrolled 32 patients with infantile-onset SMA (mean age at enrollment 4.1 months) who required feeding support or noninvasive ventilatory support for less than 12 hours daily, allowing for the inclusion of patients with more severe disease. At 14 months of age, 20 patients (91%) in STR1VE-US and 31 patients (97.5%) in STR1VE-EU survived without the requirement for permanent ventilation, compared to 6 of 23 (26%) in untreated historical controls. At the 18-month trial visit, 13 patients (59%) in STR1VE-US and 14 patients (44%) in STR1VE-EU were able to sit without assistance, whereas none of the 23 untreated historical controls could do so. The results of the phase 3 confirmatory study (STRIVE-US) published after FDA approval were largely consistent with previously available findings at the time of approval.

## **Pre-Symptomatic Patients Likely to Develop Type 1 SMA**

**SPR1NT** is a Phase 3, multi-center, single-arm study that investigated the efficacy and safety of Zolgensma in 30 pre-symptomatic children with SMN1 mutations and either 2 or 3 copies of the SMN2 gene who were treated at 6 weeks of age or younger. The trial ended in June 2021. SPR1NT trial participants were divided into 2 cohorts based on SMN2 copy number: Cohort 1 included 14 infants (n=14) with two copies of SMN2 who were expected to develop SMA, while Cohort 2 included 15 infants (n=15) with three copies of SMN2 who were expected to develop SMA. The trial investigator determined that there were no serious adverse events associated with treatment in either cohort.

SPR1NT clinical trial demonstrate age-appropriate milestone development in pre-symptomatic children with SMA without respiratory or nutritional support of any kind, and with no serious, treatment-related AEs.

- In the cohort of patients with two copies of SMN2: 11 of 14 (79%) met the study's primary endpoint of sitting without support for at least 30 seconds (10 of these patients did so within the WHO window of normal development); 5 patients (36%) were able to stand independently (3 of whom did so within the WHO window of normal development); 4 patients (29%) were able to walk independently (3 of whom did so within the WHO window of normal development) (Strauss et al., 2022).
- In the cohort of patients with three copies of SMN2, 8 (53%) met the study's primary endpoint of standing alone for at least three seconds, and 6 (40%) walked independently. All these motor milestones were met within the WHO normal development window. All patients who had not yet reached these developmental milestones were still within the WHO normal development window (Strauss et al., 2022).

## Type 2 SMA

STRONG is a Phase 1, open-label, dose-comparison, multi-center trial that evaluated the safety and efficacy of a one-time intrathecal (IT) administration of Zolgensma. Patients with SMA type 2 with three copies of the SMN2 gene who were able to sit unassisted for 10 seconds but were unable to walk or stand were included in the study. The primary endpoints were safety/tolerability, independent standing for ≥ 3 seconds in patients aged 6 to < 24 months or change in Hammersmith Functional Motor Scale-Expanded (HFMSE) score in patients aged 24 to < 60 months. Outcomes were compared with those of Pediatric Neuromuscular Clinical Research dataset (PNCR). Patients received prophylactic prednisolone (1 mg/kg/day) 24 hours prior to IT delivery, maintained for approximately 30 days with a taper depending on clinical toxicity. In May 2019, it was reported that the data showed motor function gains and milestone achievements. Two serious treatment-related AEs also occurred, both transaminase elevation. However, the frequency of children with such AEs were lower than that seen with IV administration of Zolgensma. The FDA initiated a partial clinical trial hold in October 2019. In August 2021, the hold was lifted, and the FDA determined that the STRONG study could proceed with IT delivery. However, despite release from clinical hold, the sponsor (Novartis) elected not to enroll more patients. This phase 1 and 2 study ended in November 2021. The results of the Phase 1/2 STRONG study of 30 children aged ≥ 2 years and < 5 years old with SMA Type 2 reported in 2021, showed that treatment with Zolgensma IT led to significant increases in HFMSE and a clinically meaningful response.

Further studies are needed to validate the efficacy of IT delivery in SMA type 2. To address this, Novartis is sponsoring **STEER**, a randomized, sham-controlled, double-blind phase 3 study (NCT05089656). STEER will build upon the Phase 1/2 STRONG study which showed that IT treatment with Zolgensma led to significant increases in HFMSE scores and a clinically meaningful response in older patients ≥2 years and <5 years old with SMA Type 2.

## Zolgensma (onasemnogene abeparvovec): Policy No. 348

Last Approval: 1/4/2023

Next Review Due By: December 2023



The primary objective of STTER is to evaluate the clinical efficacy, safety, and tolerability of a one-time IT dose of OAV-101 in treatment naïve children and young people with Type 2 SMA who are between 2 and 18 years of age, able to sit, but have never walked.

A technology assessment evaluating the gene replacement therapy Zolgensma for treatment of patients with SMA Type 1 rated the published evidence as insufficient to assess the safety and/or impact on health outcomes or patient management. The report noted that the body of evidence is of very-low-quality as it is derived from one small single-arm study that does not allow for conclusions to be drawn. The assessment noted that substantial uncertainty exists due to the lack of publications in separate patient populations and lack of directly comparative data. Although evidence is very limited, the suggestion of potential clinical benefit is notable given the extremely poor prognoses and few treatment options for infants with SMA type 1. A poor rating was also assigned for use of Zolgensma in patients with other types of SMA, or with > 2 copies of SMN2 due to the lack of evidence for the use of onasemnogene abeparvovec in these populations. The report also indicates that there is insufficient evidence to establish definitive patient selection criteria for Zolgensma gene therapy (Hayes, 2021).

## **National and Specialty Organizations**

## **SMA Newborn Screening Multidisciplinary Working Group**

A working group comprised of 15 SMA experts of clinicians and geneticists convened to develop treatment guidelines for infants who test positive for SMA during the newborn screening process (Glascock, 2018). The guidelines are based on the knowledge that disease severity is directly correlated with the underlying genetic alteration that promotes SMA. **NOTE:** This treatment algorithm was published prior to the approval of Zolgensma.

- The recommendation is that all infants with confirmed SMA type 1 or 2 (the most common and severe forms of the disease) who have only 2 or 3 copies of the *SMN2* gene should receive immediate treatment with an *SMN* up-regulating therapy (n=13). For those infants in which immediate treatment is not recommended, guidelines were developed that outline the timing and appropriate screens and tests to be used to determine the timing of treatment initiation.
- All infants with confirmed SMA type 1 or 2 (the most common and severe forms of the disease) who have only two or three copies of the SMN2 gene should receive immediate treatment with an SMN up-regulating therapy.
- SMA Types 2 or 3 with 3 or fewer copies of the SMN2 treatment with a disease modifying gene: immediate treatment with a disease modifying therapy and referral to both a neuromuscular specialist and a geneticist is recommended; for those with only one copy of SMN2 who are symptomatic at birth, the attending physician should determine whether the patient and family would benefit from treatment.
- Patients with four copies of SMN2 should be screened periodically for symptoms and referred to a geneticist
  to determine the exact number of SMN2 copies, however immediate therapy is not recommended. NOTE:
  Revised guidelines in 2020, recommends that infants diagnosed with SMA via newborn screening who
  have four SMN2 gene copies receive immediate treatment (discussed below). This recommended revision
  was based on Biogen's NURTURE clinical trial.
- For those infants in which immediate treatment is not recommended, guidelines were developed that outline the timing and appropriate screens and tests to be used to determine the timing of treatment initiation.

The Working Group revised their guidelines in 2020, advising that infants diagnosed with SMA via newborn screening who have four SMN2 gene copies receive immediate treatment (Glascock, 2020). The group noted the recent publication of data from Biogen's NURTURE clinical trial demonstrating the dramatic impact of early nusinersen treatment, with data indicating that treatment under 6 weeks of age is significantly superior to treatment after 6 weeks of age in patients with two or three copies of SMN2. According to the Working Group, the predicted outcomes for patients with four copies of SMN2 would be similar to those for patients with three copies.

Patients with 5 (or more) SMN2 gene copies should be observed and screened for symptoms. The group acknowledged that current laboratory assays designed to detect SMN2 copy number frequently have difficulty distinguishing high copy numbers of SMN2, and that many laboratories report results as 4 or more SMN2 copies, without providing an exact number. As a result, further testing with a laboratory capable of determining the exact SMN2 copy number is recommended.

Other recommendations were not reconsidered and remain unchanged from the previous guidelines in 2018.

Zolgensma (onasemnogene abeparvovec): Policy No. 348

Last Approval: 1/4/2023

Next Review Due By: December 2023



European Medical Agency (EMA): 2020 European Neuromuscular Expert Ad-Hoc Consensus Statement on Gene Replacement Therapy for SMA. Following the EMA's approval of Zolgensma in May 2020, 11 consensus statements addressing qualification, patient selection, safety concerns, and long-term monitoring were issued by a panel of 13 neuromuscular specialists. The following recommendations were deemed "strong" and received unanimous agreement from the expert panel.

- Consensus statement 1: Traditional SMA types (e.g., type 0, 1, 2, 3, 4) alone are not sufficient to define
  patient populations who might benefit most from gene therapy. In symptomatic patients age at onset, disease
  duration and motor function status at the start of treatment are the most important factors that predict
  response to treatment.
- Consensus statement 2: In pre-symptomatic patients SMN2 copy number is the most important predictor of
  clinical severity and age of onset. As long as no better biomarkers or predictors are available, treatment
  decisions for pre-symptomatic patients should primarily be based on SMN2 copy number. Determination of
  SMN2 copy number needs to be performed in an expert laboratory with adequate measures of quality control.
- Consensus statement 3: Approval of gene therapy for SMA with Zolgensma is based on clinical trials with patients with SMA less than 6 months of age. Additional data of patients up to 2 years and weighing up to 13.5 kg are made public through congress presentations. These data mainly come from non-systematic data collection in the US, where Zolgensma is approved up to the age of 2 years. When administered after the age of 6 months and/or in advanced stages of the disease, parents or patients should clearly be made aware that there are so far no published data on efficacy and safety. In this patient population it is particularly important for physicians to discuss the benefit/risk ratio and to carefully manage parents' or patients' expectations.
- Consensus statement 4: In patients presenting symptoms at birth, treated after a long disease duration, or
  with already severe evolution, parents should be clearly made aware that despite the use of gene therapy
  there is a high risk of living with a very severe disability. Palliative care should be discussed as an alternative
  treatment option in these circumstances.
- Consensus statement 5: Since the risk of gene therapy increases with the dose administered and since the
  dose is directly proportional with the weight, patients above 13.5 kg should only be treated in specific
  circumstances. For these patients, treatment with other disease modifying therapies or future intrathecal
  administration of Zolgensma should be considered as an alternative.
- Consensus statement 6: Until now there is no published evidence that combination of two disease modifying therapies (e.g., gene therapy and nusinersen) is superior to any single treatment alone.
- Consensus statement 7: Centers performing gene therapy for SMA should have broad expertise in the
  assessment and treatment of SMA according to international standards. They should also have the ability
  and resources to deal with potential side effects of gene therapy. Personnel should be trained and have
  experience in the use of standardized and validated outcome measure for SMA to document treatment
  effects.
- Consensus statement 8: There is convincing evidence that early initiation of treatment-- ideally in the presymptomatic stage of the disease is associated with markedly better outcome as compared to later start of
  treatment. SMA is therefore a good candidate for inclusion in newborn screening programs. In newly
  diagnosed patients any delay of treatment should be avoided. Ideally, the time frame between diagnosis and
  initiation of a disease modifying treatment should be no longer than 14 days. This is particularly important in
  infants due to the progressive course of the disease.
- Consensus statement 9: Data concerning effectiveness and safety should be collected systematically for all
  patients treated. Treatment centers should be provided with adequate resources to perform long-term
  monitoring of treated patients with standardized outcome measures. Where available disease specific
  registries should be used for data collection to allow comparison between different treatments. Data analysis
  should be performed primarily by academic institutions and networks.
- Consensus statement 10: On the basis of the currently available data and in light of existing effective treatment alternatives, intravenous gene replacement therapy with Zolgensma for patients with a body weight >13.5 kg should only be performed under a more rigorous protocol with continuous monitoring of safety and efficacy. This data collection might be best achieved in a clinical trial setting.
- Consensus statement 11: As the use of Zolgensma will generate additional evidence during the coming years,
  pharmaceutical industry, regulators, patient representatives, and academic networks should collaborate to
  ensure that any new data on effectiveness and safety are publicly available in an unbiased and timely manner.
  This growing body of evidence is indispensable for an improved risk-benefit assessment for future patients
  and should not be hampered by particular commercial or academic interests.

## Zolgensma (onasemnogene abeparvovec): Policy No. 348

Last Approval: 1/4/2023

Next Review Due By: December 2023



NOTE: A consensus greater than 95% was considered "strong consensus", between 75 and 95% "consensus", and between 50 and 75% "majority consensus". If less than 50% approved a statement, it was labeled as "no consensus". The recommendations above were presented with 100% consensus from the European expert panel.

## **National Institute for Health and Care Excellence (NICE)**

A Highly Specialized Technology (HST15) guidance addressing the evidence-based recommendations on Zolgensma for treating SMA in infants (July 2021) was published outlining the following:

- There is very limited evidence for babies with type 1 SMA who are older than 6 months at the start of treatment. Clinical experts advise, however, that some infants aged 7 to 12 months should benefit similarly to those aged 6 months and younger. Because trial data for infants aged 7 to 12 months is limited, their treatment should be discussed by a national multidisciplinary team. There is also a lack of long-term evidence, as well as no evidence in advanced type 1 SMA.
- There is no evidence to support the use of the onasemnogene abeparvovec in babies with type 2 or 3 SMA who have up to 3 copies of the SMN2 gene. There is also no evidence to support its use in infants with type 1 SMA who are being treated with nusinersen. In addition, no clinical trials are currently underway in these populations. As a result, no recommendation can be made for onasemnogene abeparvovec treatment in these populations based on clinical and cost effectiveness.
- The evidence regarding SMA infants with up to 3 copies of the SMN2 gene who have not yet manifested symptoms is inconclusive because it is based on an ongoing study that is still gathering data. However, when additional data are obtained, some of the uncertainty will be resolved. In addition, clinical specialists anticipate that the treatment will be beneficial for infants who have yet to exhibit symptoms. Also uncertain are the estimations of cost-effectiveness. However, onasemnogene abeparvovec could be cost-effective within the context of a highly specialized service for this population. Therefore, a managed access agreement is advised until the collection of additional data and currently recommended as a treatment option for the following groups of patients:
  - 1) 5q SMA with a bi-allelic mutation in the SMN1 gene and a clinical diagnosis of type 1 SMA in babies, only if:
    - they are 6 months or younger, or
    - they are aged 7 to 12 months, and their treatment is agreed by the national multidisciplinary team. For age 7 to 12 months, the national multidisciplinary team should develop auditable criteria to enable onasemnogene abeparvovec to be allocated to babies in whom treatment will give them at least a 70% chance of being able to sit independently.

It is only recommended for these groups if:

- permanent ventilation for more than 16 hours per day or a tracheostomy is not needed
- the company provides it according to the commercial arrangement.
- 2) Onasemnogene abeparvovec is recommended as an option for treating presymptomatic 5q SMA with a bi-allelic mutation in the SMN1 gene and up to 3 copies of the SMN2 gene in babies. It is recommended only if the conditions in the managed access agreement are followed.

## SUPPLEMENTAL INFORMATION

Clinical Classification of SMA. SMA disease phenotypes are classified according to a scheme developed at the Muscular Dystrophy Association-sponsored International Consortium on SMA in 1991; these phenotypes were modified into five subtypes based on age of onset, inheritance pattern, and maximum motor function achieved.

| TABLE 1: CLASSIFICATION OF SMA BY TYPE                       |                            |                                                   |                         |           |                                                |
|--------------------------------------------------------------|----------------------------|---------------------------------------------------|-------------------------|-----------|------------------------------------------------|
| SMA Type<br>(Alternative Names)                              | Age at<br>Symptom<br>Onset | Maximum Motor<br>Function Achieved                | Life<br>Expectancy      | Incidence | Affected Gene(s)<br>(Usual # of SMN<br>copies) |
| 0<br>(Congenital, Prenatal<br>SMA)                           | Prenatal<br>(30-36 weeks)  | Nil; Decreased Fetal Movement                     | Rarely past 6<br>months | <1%       | SMN1<br>(1 SMN2 copy)                          |
| 1<br>(Severe infantile acute;<br>Werdnig-Hoffman<br>disease) | Birth to 6<br>months       | Cannot sit independently,<br>difficulty breathing | < 2 years               | 60%       | SMN1<br>(2 SMN2 copies)                        |
| 2<br>Dubowitz disease                                        | 6 to 18<br>months          | Sit independently, but cannot stand or walk       | > 2 years;              | 25%       | SMN1<br>(2-4 SMN2 copies)                      |

# Zolgensma (onasemnogene abeparvovec): Policy No. 348

Last Approval: 1/4/2023

Next Review Due By: December 2023



|                                                       |                       |                                                                                                                                                | 25 years<br>(70%) |     | 80% have 3 copies                                |
|-------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----|--------------------------------------------------|
| 3<br>Kugelberg-Welander<br>disease                    | After 18<br>months    | Can stand or walk, but walking,<br>stairclimbing become difficult.<br>Wheelchair assistance usually<br>needed in later life.                   | Normal            | 15% | SMN1<br>(3-4 SMN2 copies)<br>95% have ≥ 3 copies |
| 4<br>Adult-onset SMA                                  | Adult;<br>20-30 years | Walk during adulthood; slow<br>decline; Mild to moderate<br>muscle weakness, tremor,<br>twitching in proximal muscles;<br>difficulty breathing | Normal            | <1% | SMN1<br>(≥ 4 copies)<br>4-8 SMN2 copies          |
| *Number in bold indicates the predominate copy number |                       |                                                                                                                                                |                   |     |                                                  |

Age of onset is a predictor of the severity of disease and maximal motor function as higher mortality rates associated with early disease onset (Farrar et al.) Onset occurs before 6 months of age in about 60% of affected individuals; these patients usually do not live past 2 years old.

| TABLE 2: SELECT NEUROLOGICAL FUNCTION ASSESSMENTS USED IN SMA CLINICAL TRIALS                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Measure                                                                                                                                                                          | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| Hammersmith Infant Neurologic Exam (HINE Section 2)  NOTE: CL-101 did not collect HINE-2 data, and there are no published data reporting HINE-2 scores with Zolgensma treatment. | Used for assessing various aspects of neurologic function in infants ages 2 months to 2 years  3 sections, 26 items  Section 1: Neurologic assessment  Section 2: Developmental milestone assessment  Section 3: Behavioral assessment  Section 2 may be used alone  8 items, scores of 0 to 2, 3, or 4  Children with SMA1 may score 0 on all 8 items                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Hammersmith Functional Motor Scale,<br>Expanded (HFMSE)<br>NOTE: The STRONG trial collected<br>HFMSE                                                                             | <ul> <li>Used to evaluate motor function in individuals with later-onset SMA (SMA2 and SMA3)</li> <li>33 items</li> <li>Total score ranges from 0 to 66; lower scores indicate poorer function</li> <li>Scores in patients with SMA2 or SMA3 may decline over 12 months</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Children's Hospital of Philadelphia Infant<br>Test of Neuromuscular Disorders (CHOP<br>INTEND)                                                                                   | <ul> <li>Used to evaluate motor skills of children with SMA ages ~4 months to 4 years</li> <li>Includes 16 items to assess motor skills, each graded on a scale of 0 to 4 response (0 for no response, 1 for minimal, 2 for partial, 3 for nearly full, 4 for complete)</li> <li>Total score ranges from 0 to 64; maximum total score possible is 64; lower scores indicate poorer function</li> <li>Infants with SMA may score much lower than unaffected infants</li> <li>A score exceeding 40 is rarely seen in infants with SMA 1</li> <li>Has been validated for use in SMA type 1 infants</li> <li>Informational Note: Lower CHOP-INTEND scores lower scores indicate poorer function. Total score ranges from 0 to 64; maximum total score possible is 64; lower scores indicate poorer function. The mean CHOP INTEND score at baseline was 28 (Phase 3 STR1VE-EU trial; data as of Dec 31, 2019)</li> </ul> |  |  |  |
| Motor Function Measure-32 Item (MFM-32)                                                                                                                                          | <ul> <li>Used to evaluate motor function in children and adults with neuromuscular diseases</li> <li>Assesses 32 items in 3 dimensions (standing and transfers, axial and proximal motor function, distal motor function)</li> <li>Total score ranges from 0 to 96; lower scores indicate poorer function</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |

Zolgensma (onasemnogene abeparvovec): Policy No. 348

Last Approval: 1/4/2023

Next Review Due By: December 2023



## **CODING & BILLING INFORMATION**

| CPT         | Description                                                                                              |
|-------------|----------------------------------------------------------------------------------------------------------|
| 96365-96368 | Intravenous (IV) infusion administration for therapy, prophylaxis, or diagnosis; initial, up to one hour |

| HCPCS | Description                                                                                      |
|-------|--------------------------------------------------------------------------------------------------|
| J3399 | Injection, Onasemnogene abeparvovec-xioi, per treatment, up to 5x10 <sup>15</sup> vector genomes |

**AVAILABLE DOSAGE FORMS:** Zolgensma is provided as a customized kit to meet dosing requirements for each patient, with each kit containing two (2) to nine (9) vials of Zolgensma. Dosage is determined by patient weight.

All vials have a nominal concentration of  $2.0 \times 10^{13}$  vector genomes (vg) per mL. Each vial of Zolgensma contains an extractable volume of not less than either 5.5 mL or 8.3 mL.

**CODING DISCLAIMER.** Codes listed in this policy are for reference purposes only and may not be all-inclusive. Deleted codes and codes which are not effective at the time the service is rendered may not be eligible for reimbursement. Listing of a service or device code in this policy does not guarantee coverage. Coverage is determined by the benefit document. Molina adheres to Current Procedural Terminology (CPT®), a registered trademark of the American Medical Association (AMA). All CPT codes and descriptions are copyrighted by the AMA; this information is included for informational purposes only. Providers and facilities are expected to utilize industry standard coding practices for all submissions. When improper billing and coding is not followed, Molina has the right to reject/deny the claim and recover claim payment(s). Due to changing industry practices, Molina reserves the right to revise this policy as needed.

## APPROVAL HISTORY

1/4/2023

Policy revised. Updated Overview, Coverage Policy, Summary of Evidence and References sections. IRO Peer Review: 11/30/2022. Board-certified practicing physician in Neurological Surgery.

Practicing physician board certified in Neurology. The following criteria were updated:

- #3: No change in intent of criteria; clarification by addition of 'Clarified genetic confirmation of SMA with bi-allelic mutations' (as per indication)
- #4 (copies of SMN2 gene):
  - Revised from 'No more than 2 copies of the SMN2 gene' revised to: No more than 3 copies of the SMN gene
- #5: Removed criterion: Less than 6 months of age at the onset of symptoms
- #7 (previous treatments): Revised criteria from 'Confirmation/attestation of member's current and previous enrollment in clinical trials, history of treatment with gene therapy, prior antisense oligonucleotide treatment, or cell transplantation related to SMA or Zolgensma, including:' Revised to: Confirmation/attestation of member's current and previous SMA treatments.
- #7c: Revised criteria to allow for members who are/have been on Evrysdi or Spinraza to receive Zolgensma.
   Previous criteria only allowed tx-naïve patients.
  - Revised from: Member is not currently receiving therapy with an investigational or commercial product, including Spinraza (nusinersen) or Evrysdi (risdiplam), for the treatment of SMA.
  - Revised to: Zogensma will not be used in combination with an investigational treatment or alternative SMA therapy [e.g., Spinraza (nusinersen), Evrysdi (risdiplam)]. Treatment must be discontinued prior to infusion of Zolgensma].
- #7c: Revised Molina Clinical Reviewer note.
  - Revised from: Molina Clinical Reviewer: May also engage with Prescriber/treating physicians to determine whether switching to Zolgensma therapy may offer a superior chance of clinical benefit.
  - Revised to: Molina Clinical Reviewer: Review clinical history and profile; terminate current authorizations for SMN modifying therapy upon approval of Zolgensma.
- #11: Revised criterion. Broaden criteria to ensure that member does not have advanced SMA (per labeling):
  - Revised from: Member must not currently require permanent ventilation defined by the need for continuous ventilator support (invasive or non-invasive ventilation) for more than 16 hours during a 24-hour period for at least 14 days without an acute, reversible illness: a. Invasive ventilatory support; b. Pulse oximetry < 95% saturation; c. Use of non-invasive ventilation (BiPAP) beyond use for naps and nighttime sleep</p>
  - Revised to: Member does not have advanced SMA, including but not limited to ANY of the following: a.
     Complete paralysis of limbs; or b. Invasive ventilatory support (tracheostomy); or c. Non-invasive ventilator support (e.g., CPAP, BPAP) for greater than 16 hours/day
- #12: Added criteria. Member will receive systemic corticosteroids (equivalent to oral prednisolone at 1 mg/kg) prior to and following administration of Zolgensma in accordance with the FDA approved Zolgensma labeling.
- Limitations and Exclusions criteria:
  - Removed (under exclusions): 'ANY of the following concomitant medical condition(s)' and added respiratory exclusions as per labeling in 'experimental, investigational, and unproven' section.
  - Removed (under exclusions): Member's weight: At screening visit is < 2 kg, OR Weight-for-age is below</li>

## Zolgensma (onasemnogene abeparvovec): Policy No. 348

Last Approval: 1/4/2023

Next Review Due By: December 2023



the third percentile based on World Health Organization (WHO) Child Growth Standards

- Revised (under 'experimental, investigational, and unproven'): Revised from 'Prior treatment, or being
  considered for treatment, with other gene therapy, prior antisense oligonucleotide treatment, or cell
  transplantation for SMA.' Revised to: 2. Prior treatment, or being considered for treatment, with other gene
  therapy
- Removed (under 'experimental, investigational, and unproven'): Type 2 and 3. Clinical evidence for Type
   2 and 3 SMA are not available at this time. Clinical trials are currently recruiting (SPRINT trial).
- Added: Complete paralysis of limbs (FDA approved labeling, 2022)
- Added: Advanced Spinal Muscular Atrophy (FDA approved labeling, 2022)

**12/8/2021** Policy reviewed and updated, no changes in coverage criteria, updated references. Notable content updates include Clinical Trials results.

9/2021 Q4 2020 P&T Policy converted to new template.

Policy revised. IRO Peer Review: 11/13/2020. Practicing physician board-certified in Neurology, Sleep Medicine.

- Added 'ineligible for clinical trial enrollment' to criteria: 'Member is not currently enrolled in SMA clinical trials and is ineligible for clinical trial enrollment;"
- Added 'newborn screening' to genetic testing criterion
- Added criteria (based on recent consensus): Member is less than 13.5 kg; Member does not have advanced SMA
  at baseline (e.g., complete paralysis of limbs; lower CHOP-INTEND scores); Two or fewer copies of SMN2 gene
- Updated 'Duration of Authorization' criteria FROM: Infusion may be performed up to 6 months from time of authorization- TO: Infusion may be performed up to ONE month from time of authorization OR until 2 years of age, whichever occurs first;
- Added references to Evrysdi where applicable (in exclusion of concurrent therapy);
- Added the following evidence/guidelines: Hayes assessment report; Update of the Spinal Muscular Atrophy Newborn Screening Multidisciplinary Working Group with 2020 recommendations (Glascock 2020); The European Neuromuscular Expert Ad-Hoc Consensus Statement on Gene Replacement Therapy for Spinal Muscular Atrophy (Kirschner J. 2020)

6/18/2019 P&T

New policy. IRO Peer Review: 6/10/2019. Practicing physician board-certified in Neurology, Sleep Medicine; AND IRO Peer Review: 6/7/2019. Practicing physician board certified in Pediatrics, Neurology with Special Qualification in Child, Neurodevelopmental Disabilities.

## **REFERENCES**

#### **Government Agencies**

- Centers for Medicare and Medicaid Services (CMS). Medicare coverage database. Available from <u>CMS NCD</u>. No NCD was identified for onasemnogene abeparvovec for treatment of SMA in November 2022 (search: spinal muscular atrophy, onasemnogene abeparvovec, or Zolgensma).
- ClinicalTrials.gov.
  - START. ClinicalTrials.gov Identifier: NCT02122952. Gene transfer clinical trial for spinal muscular atrophy type 1. ClinicalTrials.
  - START Long-Term Follow-up. ClinicalTrials.gov Identifier: NCT03421977. Long-term follow-up study for patients from AVXS-101-CL-101 (START). Available from <u>ClinicalTrials</u>.
  - STR1VE. ClinicalTrials.gov Identifier: NCT03306277. Gene replacement therapy clinical trial for patients with spinal muscular atrophy type 1. Available from ClinicalTrials.
  - SPR1NT. ClinicalTrials.gov Identifier: NCT03505099. Pre-symptomatic study of intravenous AVXS-101 in spinal muscular atrophy (SMA) for patients with multiple copies of SMN2. Available from ClinicalTrials.
  - STRONG. ClinicalTrials.gov Identifier: NCT03381729. Study of intrathecal administration of AVXS-101 for spinal muscular atrophy. Available from ClinicalTrials.
  - NCT02122952. Al-Zaidy et al. (2019) Study Health outcomes in spinal muscular atrophy type 1 following AVXS-101 gene replacement therapy. Available from <u>ClinicalTrials</u>.
- 3. United States Food and Drug Administration (FDA).
  - Summary basis for regulatory action for Yescarta (BLA125643). 2017; Available at: FDA. Accessed April 2021.

#### **Prescribing Information and Drug Compendia**

- Clinical Pharmacology [database online]. Tampa, FL: Gold Standard, Inc.; 2021. Available from <u>ClinicalKey</u>. Registration and login required. Accessed November 2022.
- 2. Drug Facts and Comparisons. Facts and Comparisons eAnswers [online]..Available from Wolters Kluwer Health, Inc. Registration and login required. Accessed Nov 2022.
- 3. Zolgensma (onasemnogene abeparvovec) [prescribing information]. Bannockburn, IL: Novartis Gene Therapies Inc; August 2022.

#### **Peer Reviewed Publications**

- 1. Calucho, M., Bernal, S., Alías, L., et al. Correlation between SMA type and SMN2 copy number revisited: An analysis of 625 unrelated Spanish patients and a compilation of 2834 reported cases. Neuromuscul Disord. 2018 Mar;28(3):208-215. doi: 10.1016/j.nmd.2018.01.003. Epub 2018 Jpp 11. PMID: 20433703
- Day JW, Finkel RS, Chiriboga CA, et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy in patients with two copies of SMN2 (STR1VE): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol. 2021 Apr;20(4):284-293. doi: 10.1016/S1474-4422(21)00001-6. Epub 2021 Mar 17. PMID: 33743238.
- 3. Day JW, Mendell JR, Mercuri E, et al. Clinical Trial and Postmarketing Safety of Onasemnogene Abeparvovec Therapy. Drug Saf. 2021 Oct;44(10):1109-1119. doi: 10.1007/s40264-021-01107-6. Epub 2021 Aug 12. Erratum in: Drug Saf. 2022 Feb;45(2):191-192.Keinath MC, Prior DE, Prior TW. Spinal Muscular Atrophy: Mutations, Testing, and Clinical Relevance. Appl Clin Genet. 2021 Jan 25;14:11-25. doi: 10.2147/TACG.S239603. PMID: 33531827; PMCID: PMC7846873.
- Mendell JR, Al-Zaidy S, Shell R et al. Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. N Engl J Med. 2017 Nov 2;377(18):1713-1722. doi: 10.1056/NEJMoa1706198. PMID: 29091557.

## Zolgensma (onasemnogene abeparvovec): Policy No. 348

Last Approval: 1/4/2023

Next Review Due By: December 2023



- Mendell JR, Al-Zaidy SA, Lehman KJ, et al.. Five-Year Extension Results of the Phase 1 START Trial of Onasemnogene Abeparvovec in Spinal Muscular Atrophy. JAMA Neurol. 2021 Jul 1;78(7):834-841. doi: 10.1001/jamaneurol.2021.1272. PMID: 33999158; PMCID: PMC8129901.
- Mercuri E, Muntoni F, Baranello G, et al. STR1VE-EU study group. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy type 1 (STR1VE-EU): an open-label, single-arm, multicenter, phase 3 trial. Lancet Neurol. 2021 Oct;20(10):832-841. doi: 10.1016/S1474-4422(21)00251-9.
- 7. Strauss KA, Farrar MA, Muntoni F, et al. SPR1NT trial.
  - a. Onasemnogene abeparvovec for presymptomatic infants with two copies of SMN2 at risk for spinal muscular atrophy type 1: the Phase III SPR1NT trial. Nat Med. 2022 Jul;28(7):1381-1389. doi: 10.1038/s41591-022-01866-4. Epub 2022 Jun 17. PMID: 35715566; PMCID: PMC9205281.
  - b. Onasemnogene abeparvovec for presymptomatic infants with three copies of SMN2 at risk for spinal muscular atrophy: the Phase III SPR1NT trial. Nat Med. 2022 Jul;28(7):1390-1397. doi: 10.1038/s41591-022-01867-3. Epub 2022 Jun 17. PMID: 35715567; PMCID: PMC9205287.

#### **National and Specialty Organizations**

- Genetics Home Reference. Spinal muscular atrophy. Reviewed: October 2018. Published May 28, 2019. U.S. National Library of Medicine website. Available <u>here</u>. Accessed November 2022.
- 2. Cure SMA Multidisciplinary Working Group.
  - Glascock J, Sampson J, Haidet-Phillips A,, et al. Treatment Algorithm for Infants Diagnosed with Spinal Muscular Atrophy through Newborn Screening. J Neuromuscul Dis. 2018;5(2):145-158. doi: 10.3233/JND-180304. PMID: 29614695; PMCID: PMC6004919.
  - Glascock J, Sampson J, Connolly AM, et al. Revised Recommendations for the Treatment of Infants Diagnosed with Spinal Muscular Atrophy Via Newborn Screening Who Have 4 Copies of SMN2. J Neuromuscul Dis. 2020;7(2):97-100. doi: 10.3233/JND-190468. PMID: 32007960; PMCID: PMC7175931
- 3. Kirschner J, Butoianu N, Goemans N, et al. European ad-hoc consensus statement on gene replacement therapy for spinal muscular atrophy. Eur J Paediatr Neurol. 2020 Sep;28:38-43. doi: 10.1016/j.ejpn.2020.07.001. Epub 2020 Jul 9. PMID: 32763124; PMCID: PMC7347351..
- Mercuri E, Finkel RS, Muntoni F, et al; SMA Care Group. Diagnosis and management of spinal muscular atrophy: Part 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscul Disord. 2018 Feb;28(2):103-115. doi: 10.1016/j.nmd.2017.11.005. Epub 2017 Nov 23. PMID: 29290580.
- Finkel RS, Mercuri E, Meyer OH, et al. Diagnosis and management of spinal muscular atrophy: Part 2: Pulmonary and acute care; medications, supplements and immunizations; other organ systems; and ethics. Neuromuscul Disord. 2018 Mar;28(3):197-207. doi: 10.1016/j.nmd.2017.11.004. Epub 2017 Nov 23. PMID: 29305137.
- National Organization for Rare Disorders (NORD). Spinal Muscular Atrophy. National Organization for Rare Disorders. Danbury, CT. Available from NORD. Accessed November 2022.

#### Other Peer Reviewed and Professional Organization Publications (used in the development of this policy)

- Hayes. Precision Therapy Assessment. Onasemnogene abeparvovec-xioi (Zolgensma) for spinal muscular atrophy. Jul 29, 2020. Annual Review: Sep 14, 2021 Available from <u>Hayes</u>. Accessed November 2022. Registration and login required.
- UpToDate [website]. Registration and login required.
  - a. Bodamer, OA. Spinal muscular atrophy. Topic last updated: Oct 20, 2022. Topic 6146 Version 53.0
  - b. Flomenberg, P; Daniel R. Overview of gene therapy, gene editing, and gene silencing. Last updated: Nov 15, 2022.

#### Supplemental Information' section

Table 1 adapted from Table 1 of Verhaart et al. 2017; Number of SMN2 copies based on Calucho et al. 2018.

- Verhaart IEC, Robertson A, Wilson IJ, et al. Prevalence, incidence and carrier frequency of 5q-linked spinal muscular atrophy a literature review. Orphanet J Rare Dis. 2017;12(1):124.
- Calucho M, et al. Correlation between SMA type and SMN2 copy number revisited: An analysis of 625 unrelated Spanish patients and a compilation of 2834 reported cases. Neuromuscul Disord. 2018;28(3):208-215.
- 3. De Sanctis R, Pane M, Coratti G, et al. Clinical phenotypes and trajectories of disease progression in type 1 spinal muscular atrophy. Neuromuscular disorders: NMD. 2018;28(1):24-28.

#### Table 2

- 1. Farrar MA, et al. Ann Neurol. 2017;81(3):355-368.
- 2. Haataja L, Mercuri E, Regev R, et al. Optimality score for the neurologic examination of the infant at 12 and 18 months of age. J Pediatr. 1999; 135(2 pt 1):153-61.
- 3. Romeo DM, Ricci D, Brogna C, Mercuri E. Use of the Hammersmith Infant Neurological Examination in infants with cerebral palsy: a critical review of the literature. Dev Med Child Neurol. 2016;58(3):240-45.
- Glanzman AM, et al; the Pediatric Neuromuscular Clinical Research Network for Spinal Muscular Atrophy (PNCR), and the Muscle Study Group (MSG). Validation of the Expanded Hammersmith Functional Motor Scale in spinal muscular atrophy type II and III. J Child Neurol. 2011;26(12):1499-507.
- 5. Mercuri É, Finkel R, Montes J, et al. Patterns of disease progression in type 2 and 3 SMA: implications for clinical trials. Neuromuscul Disord. 2016;26(2):123-31.
- 6. Glanzman AM, Mazzone E, Main M, et al. The Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND): test development and reliability. Neuromuscular disorders: NMD. 2010;20(3):155-161.
- Glanzman AM, et al. The Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND): test development and reliability. Neuromuscul Disord. 2010;20(3):155-61.
- 8. Glanzman ÁM, McDermott MP, Montes J. Validation of the Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND). Pediatr Phys Ther. 2011;23(4):322-26. Bérard C, Payan C, Hodgkinson I, Fermanian J; MFM Collaborative Study Group. A motor function measure for neuromuscular diseases. Construction and validation study. Neuromuscul Disord. 2005;15(7):463-70.

## **APPENDIX**

Reserved for State specific information. Information includes, but is not limited to, State contract language, Medicaid criteria and other mandated criteria.

Zolgensma (onasemnogene abeparvovec): Policy No. 348 Last Approval: 1/4/2023

Next Review Due By: December 2023



## Illinois

For Medicaid reviews, apply the state specific Zolgensma prior authorization criteria provided by the Illinois Department of Healthcare and Family Services (HFS) dated 3/11/2020, effective 5/1/2020.