Last Approval: 12/8/2021 Next Review Due By: December 2022 #### **DISCLAIMER** This Molina Clinical Policy (MCP) is intended to facilitate the Utilization Management process. Policies are not a supplementation or recommendation for treatment; Providers are solely responsible for the diagnosis, treatment and clinical recommendations for the Member. It expresses Molina's determination as to whether certain services or supplies are medically necessary, experimental, investigational, or cosmetic for purposes of determining appropriateness of payment. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that this service or supply is covered (e.g., will be paid for by Molina) for a particular Member. The Member's benefit plan determines coverage – each benefit plan defines which services are covered, which are excluded, and which are subject to dollar caps or other limits. Members and their Providers will need to consult the Member's benefit plan to determine if there are any exclusion(s) or other benefit limitations applicable to this service or supply. If there is a discrepancy between this policy and a Member's plan of benefits, the benefits plan will govern. In addition, coverage may be mandated by applicable legal requirements of a State, the Federal government or CMS for Medicare and Medicaid Members. CMS's Coverage Database can be found on the CMS website. The coverage directive(s) and criteria from an existing National Coverage Determination (NCD) or Local Coverage Determination (LCD) will supersede the contents of this MCP and provide the directive for all Medicare members. References included were accurate at the time of policy approval and publication. ## **OVERVIEW** # **Obstructive Sleep Apnea (OSA)** Obstructive sleep apnea (OSA) is a breathing disorder that is defined by either a decrease or complete cessation of airflow during sleep. Airflow obstruction arises when the muscles in the back of the throat fail to keep the airway open. OSA is characterized by repetitive pauses in breathing during sleep, despite the effort to breathe, and is usually associated with a reduction in blood oxygen saturation and is often portrayed by loud snoring, gasping, or choking, and by hypopnea or apnea during sleep. These pauses in breathing, called apneas, typically last 20 to 40 seconds. Hypopnea involves episodes of overly shallow breathing or an abnormally low respiratory rate. Hypopnea differs from apnea in that there remains some flow of air. Untreated OSA is associated with symptoms of sleep deprivation and excessive sleepiness, cognitive dysfunction, diminished quality of life and productivity, sexual dysfunction, mood changes, increased accident risk, and cardiovascular disease and stroke. (Kryger et al., 2021; Paruthi, 2021; Badr, 2021). The results of polysomnogram (PSG) testing are reported in terms of the apnea-hypopnea index (AHI), or respiratory disturbance index (RDI). The AHI is determined by adding the total number of apneas and hypopneas during the sleep time and dividing that number by the total hours of sleep. RDI has been used synonymously with AHI, in addition to the number of apnea and hypopnea episodes, the RDI also includes the number of respiratory effort-related arousals (RERA). The severity of OSA is based on PSG results; an AHI/RDI greater than or equal to 5 and less than 15 is mild, an AHI/RDI greater than or equal to 15 and less than or equal to 30 is moderate, and an AHI/RDI greater than 30 is severe. (Kryger et al., 2021; Paruthi, 2021; Badr, 2021). Treatment of OSA includes behavioral therapy (e.g., weight loss), drug therapy, continuous positive airway pressure (CPAP), oral appliances, palatal implants, and surgery. CPAP is the first-line treatment for patients with moderate to severe OSA, with a treatment success rate of nearly 100% when used properly. CPAP provides a constant flow of air delivered through a face mask worn while sleeping to keep the upper airway open; patients frequently complain of the intrusive nature of the device, resulting in lack of acceptance or partial adherence. (Patil, et al., 2019). ### **Expiratory Positive Airway Pressure (EPAP)** Expiratory positive airway pressure (EPAP) involves the use of an air-valve-type of device, which is placed over each nostril. Air is easily allowed through the valves when one breathes in, but when one breathes out, small exit holes in the device create a back pressure, called a positive airway pressure that pushes backward through the patient's airway to keep it open. Since this positive airway pressure is created by your patient's own expiration of air, it is called EPAP. There is currently one device called the Provent (Ventus Medical Inc.) that is used for EPAP. The device is equipped with small bidirectional valves worn just inside each nostril and secured to the outside of the nose with adhesive. The Provent device is intended for treatment of mild, moderate, and severe OSA. The device is typically prescribed by a sleep medicine specialist and is used by the patient at home. (Patil, et al., 2019). Last Approval: 12/8/2021 Next Review Due By: December 2022 The Food and Drug Administration (2010) Center for Devices and Radiological Health (CDRH) classified the Provent Sleep Apnea Therapy (Ventus Medical Inc.) as an intranasal expiratory resistance valve for OSA and regulated as a Class II device, classified under the Product Code OHP. ### **COVERAGE POLICY** Expiratory positive airway pressure (EPAP) devices (including but not limited to nasal dilators [Provent]) are considered experimental and investigational due to insufficient clinical evidence supporting the safety and efficacy for treating OSA. **DOCUMENTATION REQUIREMENTS.** Molina Healthcare reserves the right to require that additional documentation be made available as part of its coverage determination; quality improvement; and fraud; waste and abuse prevention processes. Documentation required may include, but is not limited to, patient records, test results and credentials of the provider ordering or performing a drug or service. Molina Healthcare may deny reimbursement or take additional appropriate action if the documentation provided does not support the initial determination that the drugs or services were medically necessary, not investigational or experimental, and otherwise within the scope of benefits afforded to the member, and/or the documentation demonstrates a pattern of billing or other practice that is inappropriate or excessive. #### SUMMARY OF MEDICAL EVIDENCE Results from early studies indicate that therapeutic response was variable among participants and small sample sizes. Further research from larger, well-designed studies is needed to evaluate the effectiveness of the device compared with established treatments for OSA, to determine its long-term effectiveness and to determine which patients would benefit from this therapy. More recently, Liu et al. (2019) published a study on the efficacy and safety of EPAP – there were no considerable differences between the use of EPAP over CPAP. Below is a summary of studies and trials published between 2009 and 2014. A small randomized, double-blind, placebo-controlled, crossover pilot study was performed by Kureshi et al. (2014). Candidates ages 8-16 underwent nasal expiratory positive airway (NEPAP) and placebo polysomnograms. In conclusion, NEPAP devices are a potential alternative therapy for OSAS in a small subset of children. Due to variability in individual responses, efficacy of NEPAP should be evaluated with PSG. Rossi et al. (2013) evaluated the efficacy of the Provent nasal device for preventing the recurrence of OSA following CPAP withdrawal among 67 patients with OSA who were receiving CPAP. The goal of the study was to determine if OSA patients could occasionally substitute the Provent device for CPAP. For the Active Provent vs. Placebo Provent groups, primary outcomes included OSA severity, oxygen desaturation index (ODI), AHI, and Epworth Sleepiness Scale (ESS) score. Secondary outcomes for the Active Provent vs. Placebo Provent groups included: ODI from ambulatory pulse oximetry and blood pressure. For the CPAP vs. Active Provent groups, or CPAP vs. Placebo Provent groups, secondary outcomes included: ODI, AHI, ESS, and blood pressure. Rossi et al. also assessed compliance by patient diaries – CPAP usage data was downloaded from the devices. OSA recurred in the Provent (ODI 35.8, SD 17.4) and placebo Provent (ODI 28.2, SD 18.3) groups; there was no significant difference in ODI, AHI and ESS between the Provent and Placebo Provent groups at two weeks. ODI from ambulatory pulse-oximetry and blood pressure at two weeks were not different in the Provent vs. Placebo Provent groups. ODI, AHI and blood pressure (but not ESS) were significantly higher in the Provent and Placebo Provent groups compared with the CPAP group. In conclusion, Provent cannot be recommended as an alternative short-term therapy for patients with moderate to severe OSA already using CPAP. Berry et al. (2011) performed a prospective, multicenter, sham-controlled, parallel-group, randomized, double-blind clinical trial to investigate the efficacy of nasal EPAP device as a treatment for OSA. The trial included individuals with OSA and a pre-study AHI ≥10/hour were included. Treatment with a nasal EPAP device (N=127) or similar appearing sham device (N=123) for 3 months was completed. Polysomnography was performed on 2 non-consecutive nights (random order: device-on, device-off) at week one and after three months of treatment. Analysis of an intention at week one found the median AHI value (device-on versus device-off) was significantly lower with EPAP. The decrease in the AHI (median) was greater for the ITT group. At month three, the percentage decrease in the AHI was 42.7% (EPAP) Last Approval: 12/8/2021 Next Review Due By: December 2022 and 10.1% (sham), P<0.0001. Over three months of EPAP treatment, the ESS decreased and the median percentage of reported nights used (entire night) was 88.2%. The authors concluded that the nasal EPAP device significantly reduced the AHI and improved subjective daytime sleepiness compared to the sham treatment in patients with mild to severe OSA with excellent adherence. Kryger et al. (2011) conducted a prospective, multicenter, single-arm, open-label extension to a three-month EPAP vs sham randomized clinical trial. The goal was to evaluate the long-term durability of treatment response and safety of a nasal EPAP device used to treat OSA. The trial included OSA patients in the EPAP arm of the EPAP vs. sham randomized study who used the EPAP device inclusion criteria was defined as use of a EPAP device ≥ four hours per night, ≥ 5 nights per week on average during months one and two of the three month trial. and had ≥ 50% reduction in AHI or AHI reduction to <10 documented by PSG, comparing the three-month device-on PSG to the week one device-off PSG. Treatment with a nasal EPAP device (N = 41) for 12 months was performed. Of the 51 patients eligible, 34 were still using the EPAP device at the end of 12 months. Median AHI was reduced from 15.7 to 4.7 events/h (week 1 device-off versus month 12 device-on). The decrease in the AHI (median) was 71%. The median proportion of sleep time with snoring was reduced by 74%. Over 12 months of EPAP treatment, the ESS decreased and the median percentage of reported nights used (entire night) was 89%. In conclusion, nasal EPAP significantly reduced the AHI, improved subjective daytime sleepiness and reduced snoring after 12 months of treatment. Long-term adherence to EPAP was excellent in those who had a positive clinical response at month three of the EPAP vs. sham study. Walsh et al. (2011) evaluated tolerability, short-term efficacy and adherence of an EPAP nasal device in 59 OSA patients who refused CPAP or used CPAP less than 3 hours per night. After demonstrating tolerability to the EPAP device during approximately one week of home use, 47 patients (80%) underwent a screening/baseline polysomnogram (PSG1). Forty-three patients met AHI entry criteria and underwent a treatment polysomnogram (PSG2) within 10 days of PSG1. Twenty-four patients (56%) met pre-specified efficacy criteria and underwent PSG3 which was performed after 5 weeks of EPAP treatment. Compared to PSG1, mean AHI was significantly lower at both PSG2 and PSG3. For most patients, AHI at PSG3 was similar to AHI at PSG2. Device use was reported an average of 92% of all sleep hours. Improvements in AHI and ESS scores were noted combined with the high degree of treatment adherence observed – this suggests that the EPAP device tested may a useful therapeutic option for OSA. Limitations of the study include lack of randomization and control, small sample size and short-term follow-up; a potential for bias exists due to manufacturer sponsorship of the study. Patel et al. (2011) studied a one-way nasal device at the New York University Sleep Disorders Center, using EPAP to identify appropriate patients for treatment. Pilot data provided potential mechanisms of action. Twenty patients with OSA underwent three nocturnal polysomnograms (NPSG) including diagnostic, therapeutic (with a Provent® nasal valve device) and CPAP. Nineteen of the 20 patients tolerated the device. Nasal valve device produced improvement in sleep disordered breathing in 75% of patients with OSA of varying severity; 50% of patients reached a clinically significant reduction in RDI. While the study was not able to establish predictors of success or a definitive mechanism of action, it helps define a restricted list of candidates for further investigation. A potential for bias exists due to manufacturer sponsorship of the study. Rosenthal et al. (2009) performed a multicenter, prospective study of nasal EPAP device in the treatment of OSA. Study objectives were to evaluate the efficacy of a novel device placed in the nares that imposes an expiratory resistance for the treatment of OSA and evaluate adherence to the device over a 30-day in-home trial period. Participants reported using the device all night long for 94% of nights during the in-home trial. The authors concluded that treatment was well tolerated and accepted by participants. An overall reduction in AHI was documented however, therapeutic response was variable. Further research is required to identify the ideal candidates for this therapeutic option. The first study using the Provent device for the treatment of OSA was conducted at the Stanford Research Institute International. Colrain et al. (2008) examined the hypothesis that the application of expiratory resistance via a nasal valve device would improve breathing during sleep in subjects with OSA and in primary snorers. Thirty men and women were recruited for the study; 24 had at least mild OSA (AHI >5) and six were primary snorers. Participants underwent two nights of polysomnographic evaluation, one with and one without a new nasal resistance device (with the order of nights counterbalanced across participants). Standard PSG was conducted to compare participants sleep both with and without the device, with the scoring conducted blind to treatment condition. Measurement of AHI and oxygen Last Approval: 12/8/2021 Next Review Due By: December 2022 desaturation (O2DI) indices both significantly decreased – the percentage of the night spent above 90% saturation significantly increased with device use. Results of this pilot study are suggestive of a therapeutic effect of expiratory nasal resistance for some OSA patients and indicate that this technique is worthy of further clinical study. A potential for bias exists due to manufacturer sponsorship of the study. ## Systematic Reviews Riaz et al. (2015) performed a systematic review and meta-analysis to quantify the effectiveness of nasal EPAP devices or Provent as treatment for OSA. Eighteen studies (920 patients) were included. Pre- and post-nasal EPAP means \pm standard deviations (M \pm SD) for apnea-hypopnea index (AHI) in 345 patients decreased from 27.32 \pm 22.24 to 12.78 \pm 16.89 events/hr (relative reduction = 53.2%). Nasal EPAP (Provent) reduced AHI by 53%, ODI by 41% and improved LSAT by three oxygen saturation points. There were no clear characteristics (e.g., demographic factors, medical history, physical exam finding) that predicted favorable response to these devices. Limited evidence suggests that high nasal resistance could be associated with treatment failure. Additional studies are needed to identify demographic and polysomnographic characteristics that would predict therapeutic success with Provent. Patil et al. (2019) reported on the clinical practice guidelines published by the American Academy of Sleep Medicine (AASM). The organization conducted a systematic review to review the evidence. An AASM task force provided recommendations for the treatment of OSA. Two good practice statements were published: - 1. Treatment of OSA with positive airway pressure (PAP) therapy should be based on a diagnosis of OSA established using objective sleep apnea testing. - 2. Adequate follow-up, including troubleshooting and monitoring of objective efficacy and usage data to ensure adequate treatment and adherence, should occur following PAP therapy initiation and during treatment of OSA. In addition, AASM made the following recommendations: - 1. PAP should be used, compared to no therapy, for treatment of OSA in adults with excessive sleepiness, impaired sleep-related quality of life, or comorbid hypertension. - 2. PAP therapy can begin using automatic positive airway pressure (APAP) at home or in-laboratory PAP titration in adults with OSA and no significant comorbidities. - 3. CPAP or APAP is recommended for ongoing treatment of OSA in adults. - 4. CPAP or APAP over BPAP is recommended as the routine treatment of OSA in adults. - 5. Educational interventions should be given at the start of PAP therapy in adults with OSA. - 6. Behavioral interventions should be given during the onset of PAP therapy in adults with OSA. - 7. Telemonitoring-guided interventions are recommended during the onset of PAP therapy in adults with OSA. ### **Professional Organizations** The American Academy of Sleep Medicine (AASM) 2009 guidelines published in 2019 specify two good practice statements for appropriate and effective management of patients with OSA treated with positive airway pressure: - 1. OSA treatment with PAP therapy should be based on a diagnosis of OSA which is confirmed by objective sleep apnea testing; and - 2. Adequate follow-up should include monitoring objective efficacy and device data to confirm treatment and adherence; this should happen after initiation of PAP therapy and during OSA treatment. The American Academy of Pediatrics (AAP) guidelines published in 2012 for the diagnosis and management of childhood obstructive sleep apnea syndrome (OSAS). The guidelines indicate that if a child is determined to have OSAS, has a clinical examination consistent with adenotonsillar hypertrophy, and does not have a contraindication to surgery, the clinician should recommend adenotonsillectomy as the first line of treatment. If the child has OSAS but does not have adenotonsillar hypertrophy, other treatment should be considered. Clinicians should refer patients for CPAP Last Approval: 12/8/2021 Next Review Due By: December 2022 management if symptoms or objective evidence of OSAS persists after adenotonsillectomy or if adenotonsillectomy is not performed. The **American College of Physicians (ACP)** published the clinical practice guideline *Management of Obstructive Sleep Apnea in Adults*. Three recommendations were made: - 1. Patients who are overweight and obese with a diagnosis of OSA should be encouraged to lose weight. - 2. Continuous positive airway pressure (CPAP) treatment is an initial therapy for patients with OSA. - 3. Mandibular advancement devices are considered an alternative therapy to CPAP treatment for patients with OSA with a preference to these types of devices. The devices may also be considered for patients with adverse effects due to CPAP treatment. #### SUPPLEMENTAL INFORMATION None. ## **CODING & BILLING INFORMATION** #### **CPT Code** | CPT | Description | |-------|--------------------------------------------------------------| | 94799 | Unlisted pulmonary service or procedure (when used for EPAP) | #### **HCPCS Code** | HCPCS | Description | |-------|-------------------------------------------------| | E1399 | Durable medical equipment, miscellaneous (EPAP) | **CODING DISCLAIMER.** Codes listed in this policy are for reference purposes only and may not be all-inclusive. Deleted codes and codes which are not effective at the time the service is rendered may not be eligible for reimbursement. Listing of a service or device code in this policy does guarantee coverage. Coverage is determined by the benefit document. Molina adheres to Current Procedural Terminology (CPT®), a registered trademark of the American Medical Association (AMA). All CPT codes and descriptions are copyrighted by the AMA; this information is included for informational purposes only. Providers and facilities are expected to utilize industry standard coding practices for all submissions. When improper billing and coding is not followed, Molina has the right to reject/deny the claim and recover claim payment(s). Due to changing industry practices, Molina reserves the right to revise this policy as needed. ## **APPROVAL HISTORY** | 12/8/2021 | Policy reviewed, no changes to coverage criteria. Summary of Medical Evidence section condensed; updated AASM and AAP | |------------|-----------------------------------------------------------------------------------------------------------------------| | | guidelines. References updated. | | 12/9/2020 | Policy reviewed, no changes to the criteria. | | 12/10/2019 | Policy reviewed, no changes to the criteria. No new evidence-based studies or guidelines found. | | 7/10/2018 | Policy reviewed, no changes to the criteria. | | 9/19/2017 | Policy reviewed, no changes to the criteria. | | 11/8/2016 | Policy reviewed, no changes to the criteria. Summary of Medical Evidence and Reference sections updated. | | 12/16/2015 | Policy reviewed, no changes to the criteria. | | | | # REFERENCES ### **Government Agency** - Centers for Medicare and Medicaid Services (CMS). Medicare coverage database (search "continuous positive airway pressure therapy for obstructive sleep apnea 240.4"). https://www.cms.gov/medicare-coverage-database/search.aspx. Effective March 13, 2008. Accessed November 5, 2021. - Food and Drug Administration (FDA). Provent professional sleep apnea therapy (Provent 80) and Provent professional sleep apnea therapy (Provent 50): Device classification. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn_template.cfm?id=k102404. Published 2010. Accessed November 5, 2021. Last Approval: 12/8/2021 Next Review Due By: December 2022 #### Other Evidence Based Reviews and Publications - 1. AMR Peer Review. Policy reviewed on October 25, 2019 by an Advanced Medical Reviews (AMR) practicing, board-certified physician in the area of Sleep Medicine. - Badr MS. Central sleep apnea: Treatment. http://www.uptodate.com. Updated September 29, 2021. Accessed November 5, 2021. Registration and login required. - Kryger MH, Malhorta A. Management of obstructive sleep apnea in adults. http://www.uptodate.com. Updated February 23, 2021. Accessed November 5, 2021. Registration and login required. - 4. Paruthi S. Evaluation of suspected obstructive sleep apnea in children. http://www.uptodate.com. Updated February 18, 2021. Accessed November 5, 2021. Registration and login required. - Paruthi S. Management of suspected obstructive sleep apnea in children. http://www.uptodate.com. Updated January 14, 2021. Accessed November 5, 2021. Registration and login required. #### **Peer Reviewed Publications** - 1. Berry RB, Kryger MH, Massie CA. A novel nasal expiratory positive airway pressure (EPAP) device for the treatment of obstructive sleep apnea: A randomized controlled trial. Sleep. 2011 Apr 1;34(4):479-85. doi: 10.1093/sleep/34.4.479. Accessed November 5, 2021. - 2. Colrain IM, Brooks S, Black J. A pilot evaluation of a nasal expiratory resistance device for the treatment of obstructive sleep apnea. J Clin Sleep Med. 2008 Oct 15;4(5):426-33. https://pubmed.ncbi.nlm.nih.gov/18853699/. Accessed November 5, 2021. - 3. Kryger MH, Berry RB, Massie CA. Long-term use of a nasal expiratory positive airway pressure (EPAP) device as a treatment for obstructive sleep apnea (OSA). J Clin Sleep Med. 2011 Oct 15;7(5):449-53B. doi: 10.5664/JCSM.1304. Accessed November 5, 2021. - Kureshi SA, Gallagher PR, McDonough JM, Cornaglia MA, Maggs J, Samuel J, et al. Pilot study of nasal expiratory positive airway pressure devices for the treatment of childhood obstructive sleep apnea syndrome. J Clin Sleep Med. 2014 Jun 15;10(6):663-9. doi: 10.5664/jcsm.3796. Accessed November 5, 2021. - 5. Liu Y, Ying Y, Pandu JS, Wang Y, Dou S, Li Y, Ma D. Efficacy and safety assessment of expiratory positive airway pressure (EPAP) mask for OSAHS therapy. Auris Nasus Larynx. 2019 Apr;46(2):238-245. doi: 10.1016/j.anl.2018.08.013. Accessed November 5, 2021. - Patel AV, Hwang D, Masdeu MJ, Chen GM, Rapoport DM, Ayappa I. Predictors of response to a nasal expiratory resistor device and its potential mechanisms of action for treatment of obstructive sleep apnea. J Clin Sleep Med. 2011;7(1):13-22. Accessed November 5, 2021. - Patil SP, Ayappa IA, Caples SM, Kimoff RJ, Patel SR, Harrod CG. Treatment of adult obstructive sleep apnea with positive airway pressure: An American Academy of Sleep Medicine systematic review, meta-analysis, and GRADE assessment. J Clin Sleep Med. 2019 Feb 15;15(2):335-343. doi: 10.5664/jcsm.7640. Accessed November 5, 2021. - Qaseem A, Holty JEC, Owens DK, Dallas P, Starkey M, Shekelle P, Clinical Guidelines Committee of the American College of Physicians. Management of obstructive sleep apnea in adults: A clinical practice guideline from the American College of Physicians. Ann Intern Med. 2013 Oct 1;159(7):471-83. doi: 10.7326/0003-4819-159-7-201310010-00704. Accessed November 5, 2021. - Riaz M, Certal V, Nigam G, Abdullatif J, Zaghi S, Kushida CA, et al. Nasal expiratory positive airway pressure devices (Provent) for OSA: A systematic review and meta-analysis. Sleep Disord. 2015;2015;734798. doi: 10.1155/2015/734798. Accessed November 5, 2021. - Rosenthal L, Massie CA, Dolan DC, et al. A multicenter, prospective study of a novel nasal EPAP device in the treatment of obstructive sleep apnea: Efficacy and 30-day adherence. J Clin Sleep Med. 2009 Dec 15;5(6):532-7. https://pubmed.ncbi.nlm.nih.gov/20465019/. Accessed November 5, 2021. - Rossi VA, Winter B, Rahman NM, et al. The effects of Provent on moderate to severe obstructive sleep apnea during continuous positive airway pressure therapy withdrawal: A randomised controlled trial. Thorax. 2013 Sep;68(9):854-9. doi: 10.1136/thoraxjnl-2013-203508. Accessed November 5, 2021. - 12. Walsh JK, Griffin KS, Forst EH, et al. A convenient expiratory positive airway pressure nasal device for the treatment of sleep apnea in patient's non-adherent with continuous positive airway pressure. Sleep Med. 2011 Feb;12(2):147-52. doi: 10.1016/j.sleep.2010.06.011. Accessed November 5, 2021. ## **National and Specialty Organizations** Patil S, Ayappa I, Caples SM, Kimoff RJ, Patel SR, Harrod CG. Treatment of adult obstructive sleep apnea with positive airway pressure: An American Academy of Sleep Medicine clinical practice guideline. J Clin Sleep Med. 2019 Feb 15;15(2):335-343. doi: 10.5664/jcsm.7640. Accessed November 5, 2021. ### **APPENDIX** **Reserved for State specific information** (to be provided by the individual States, not Corporate). Information includes, but is not limited to, State contract language, Medicaid criteria and other mandated criteria.