Chronic rhinosinusitis (CRS) is a common inflammatory condition in which the nasal and paranasal sinus mucosa becomes swollen and inflamed leading to debilitating and persistent symptoms for at least 12 weeks. The exact etiology of CRS remains unknown (World Allergy Organization 2021). CRS is often divided into 2 phenotypes based on nasal endoscopy, CRS with nasal polyps and CRS without nasal polyps, but there is significant clinical overlap. The diagnosis of CRS is based on presenting signs and symptoms, clinical examination using anterior rhinoscopy, or nasal endoscopy. CT scan is the standard radiologic examination obtained when ethmoid sinus surgery (ESS) is being considered. Treatment of CRS is focused on reducing mucosal inflammation, promote sinus drainage, and eradicate infections that may be present. First-line treatment for CRS is usually conservative medical therapy to resolve the symptoms and consists of the following: 1) oral antibiotics, 2) saline nasal irrigation, 3) topical and/or systemic decongestants (if not contraindicated), 4) topical steroids in the form of nasal sprays for controlling inflammation and/or systemic steroids, or 5) treatment of comitant allergic rhinitis, including avoidance measures, pharmacotherapy, and/or immunotherapy. For patients who do not experience adequate relief with medical and pharmaceutical therapy, surgical interventions may be necessary. The common surgical treatment for unresponsive CRS is functional endoscopic sinus surgery (FESS), a set of minimally invasive surgical techniques. FESS is intended to open closed sinus ostia to allow proper drainage and air flow and prevent recurrent sinus infections. Complications following sinus surgery (i.e., inflammation, polyp recurrence, stenosis of the surgically enlarged sinus ostia, adhesions and middle turbinate lateralization) may lead to suboptimal outcomes and increased rates of revision (Huang et al., 2015). The standard of care following FESS usually includes saline irrigation, nasal packs (packing, sponges, or gels to provide a barrier to adhesion development and facilitate hemostasis), foam dressings, topical steroids, systemic steroids, topical decongestants, oral antibiotics, and/or sinus cavity debridement. Bioabsorbable sinus implants, which elute corticosteroids, were designed to address these limitations and improve surgical outcomes for CRS with nasal polyps (CRS–NP) when used in the immediate postoperative period. Although the exact anti-inflammatory mechanism is unknown, corticosteroids have a wide range of effects on various cell types (including mast cells, eosinophils, neutrophils, macrophages, and lymphocytes) and mediators (including histamine, eicosanoids, leukotrienes, and cytokines) involved in inflammation (SINUVA Prescribing Information, 2020).

Corticosteroid-eluting sinus stents are devices used postoperatively following ESS, or for treatment of recurrent sinonasal polyposis following ESS. These devices maintain patency of the sinus openings in the postoperative period, and/or serve as a local drug delivery vehicle. Reducing postoperative inflammation and maintaining patency of the sinuses may be important in achieving optimal sinus drainage and may impact recovery from surgery and/or reduce the need for additional surgery. The PROPEL sinus stent and SINUVA sinus implant (mometasone furoate) are corticosteroid-eluting implants indicated in patients 18 years of age and older who have had ethmoid surgery.

- The PROPEL sinus implants are bioabsorbable drug-eluting sinus stents intended to maintain patency of the ethmoid or frontal sinus opening after sinus surgery for CRS: PROPEL is indicated for the ethmoid sinus; PROPEL Mini is indicated for the ethmoid and frontal sinuses; and PROPEL Contour is indicated for the frontal and maxillary sinuses. Implantation of the Propel device into the ethmoid sinus ostia is performed by a physician under endoscopic visualization. Upon insertion, the implant expands radially to conform to the...
surgically enlarged sinus ostium following FESS and the corticosteroid is released to the local area surrounding the stent. The mometasone furoate are embedded in a polyethylene glycol polymer, which allows sustained release of the drug over an approximate duration of 30 days. The device is dissolvable over a period of several weeks, and therefore does not require removal. Each steroid-releasing implant contains 370 ug of mometasone furoate.

- **SINUVA (mometasone furoate)** is a corticosteroid-releasing sinus implant that gradually releases the mometasone furoate over a 90-day period for treatment of nasal polyps in adults who have had ESS. One SINUVA implant system contains 1350 mcg of mometasone furoate and a sterile delivery system. The implant is made of bioabsorbable polymers designed to gradually soften over time, must be implanted under endoscopic visualization, and can be endoscopically removed at 90 days or earlier. As it softens and polyps decrease in number and size, the implant may be expelled on its own or after a sneeze or forceful nose blowing. SINUVA is not biodegradable (as is the PROPEL device) and is removed 90 days after placement or earlier at the physician's discretion. Repeat administration of SINUVA has not been studied. The FDA determined that SINUVA had more of an effect than the device and approved SINUVA as a drug as opposed to a drug/device system such as PROPEL.

RELATED POLICIES / PROCEDURES

Balloon Sinus Ostial Dilation (Balloon Sinuplasty) Policy No. 408

COVERAGE POLICY

SINUVA (mometasone furoate) for the treatment of nasal polyps may be considered medically necessary when **ALL** of the following clinical criteria are met with documentation:

1. Diagnosis of recurrent nasal polyt disease; **AND**
2. History of ethmoid sinus surgery. Documentation of date of ethmoid sinus surgery required; **AND**
3. Inadequate response, clinically significant adverse effects, or contraindication to **ALL** of the following:
 a. Intranasal corticosteroids: at least a 3-month trial at the maximum recommended dose [e.g., mometasone, fluticasone, budesonide, or triamcinolone]
 - *Informational Note: First-line management usually consists of saline nasal rinses and topical intranasal corticosteroid sprays. Compared to traditional nasal sprays, large-volume corticosteroid irrigation (budesonide or mometasone) provides improved distribution and penetration, resulting in improvement of subjective sino-nasal symptoms and quality of life as well as objective radiographic and endoscopic disease severity (World Allergy Organization, 2021).*
 AND
 b. Oral corticosteroids within the last six months [e.g., prednisone, methylprednisolone, or dexamethasone]
 - *Informational Note: Systemic corticosteroids are effective, acutely shrinking polyps, but the efficacy is transient and limited by dose-dependent side effects (Head K, 2016). A 10- to 15-day course of oral corticosteroids is usually adequate. A typical adult regimen is prednisone 40 mg for five days, followed by 20 mg daily for five days (UTD 2021).*
 AND
4. Sinuva nasal implant will be used in conjunction with mometasone furoate nasal spray once daily
 - *Informational Note: All patients in the RESOLVE I and RESOLVE II trials were required to use a mometasone furoate nasal spray once daily.*
PROPEL/PROPEL Mini/PROPEL Contour (mometasone furoate) for post-operative intervention for chronic sinusitis surgery may be considered medically necessary when ALL of the following clinical criteria are met with documentation:

1. Diagnosis of CRS confirmed by CT scan and defined as symptoms lasting longer than 12 consecutive weeks in duration with inflammation of the mucosa of the nose and paranasal sinuses; AND
2. Primary or revision endoscopic sinus surgery is indicated. Documentation of date of sinus surgery required; AND
3. Prescribed to maintain patency of ONE of the following:
 a. Ethmoid sinus opening
 b. Frontal sinus opening
 c. Maxillary sinus opening
 AND
4. Inadequate response, clinically significant adverse effects, or contraindication to ALL of the following:
 a. Intranasal corticosteroids: at least a 3-month trial at the maximum recommended dose (e.g., mometasone, fluticasone, budesonide, or triamcinolone); AND
 b. Oral corticosteroids within the last 6 months (e.g., prednisone, methylprednisolone, or dexamethasone).

CONTINUATION OF THERAPY
Reauthorization is not allowed for this one-time implant treatment.

The safety and efficacy of repeat administration of SINUVA has not been evaluated.

LIMITATIONS AND EXCLUSIONS
The following are considered contraindications/exclusions based on insufficient evidence:
1. Hypersensitivity to mometasone furoate, or any component of the formulation (i.e., the copolymers of the SINUVA sinus implant or bioabsorbable polymers of the PROPEL implant including lactide, glycolide or caprolactone copolymers)

The following are considered experimental, investigational and unproven based on insufficient evidence:
1. Any indications other than those listed above

DURATION OF APPROVAL: ONE time authorization

PRESCRIBER REQUIREMENTS: Prescribed and administered by a physician specializing in otolaryngology (ENT)

AGE RESTRICTIONS: 18 years of age or older

DOSSING CONSIDERATIONS
SINUVA Implant: ONE implant contains 1350 mcg of mometasone furoate released over 90 days
PROPEL / PROPEL MINI / PROPEL CONTOUR: Each implant contains 370mcg of mometasone furoate released continuously over 30 days

QUANTITY LIMITATIONS
ONE implant per nostril per lifetime

Informational Note: The SINUVA labeling states that repeat administration has not been studied.
ADMINISTRATION:
1. The SINUVA sinus implant is a provider-administered and to be placed in the ethmoid sinuses during a routine office visit by an otolaryngologist. The corticosteroid is released over 90 days and the bioabsorbable polymers soften over this time. The implant is removed at Day 90 or earlier (at the physician’s discretion) using standard surgical instruments. Refer to product labeling for a detailed description of the implant and instructions for implant insertion; AND
2. The Propel sinus implant is inserted into the ethmoid sinus cavity by a physician under endoscopic visualization. Upon insertion, the implant expands radially to conform to the sinus cavity. The delivery system is then removed and discarded. Mometasone furoate is released over an approximate duration of 30 days. The device dissolves over several weeks and therefore does not require removal. Each steroid-releasing implant contains 370 μg of mometasone furoate; AND

DOCUMENTATION REQUIREMENTS. Molina Healthcare reserves the right to require that additional documentation be made available as part of its coverage determination; quality improvement; and fraud; waste and abuse prevention processes. Documentation required may include, but is not limited to, patient records, test results and credentials of the provider ordering or performing a drug or service. Molina Healthcare may deny reimbursement or take additional appropriate action if the documentation provided does not support the initial determination that the drugs or services were medically necessary, not investigational or experimental, and otherwise within the scope of benefits afforded to the member, and/or the documentation demonstrates a pattern of billing or other practice that is inappropriate or excessive.

DRUG INFORMATION

ROUTE OF ADMINISTRATION: Sinus Implant

DRUG CLASS: Corticosteroid, Nasal

FDA-APPROVED USES:
Propel delivers sustained steroid medication localized into the ethmoid cavity after surgery approved, with several versions available depending on the placement location in the sinus area. SINUVA is a longer lasting product, specifically created for patients suffering from recurring nasal polyps.

PROPEL implants are regulated as devices by the FDA, while the SINUVA implant is regulated as a drug. SINUVA was developed by the manufacturer of the FDA-approved PROPEL product line of steroid-releasing implants.

PROPEL (mometasone furoate) implant
FDA approved through the premarket approval process (P100044) (product code OWO)
Post-operative intervention for chronic sinusitis surgery
Bioabsorbable sinus implant indicated for patients ≥ 18 years of age following ESS to maintain sinus patency; prevents sinus obstruction from adhesions, reduces inflammation, and reduces the need for postoperative intervention (e.g., adhesion lysis, oral corticosteroids)
- Propel: Ethmoid sinus August 11, 2011
- Propel Mini: Ethmoid and frontal sinuses September 21, 2012
- Propel Contour: Frontal and maxillary sinuses February 23, 2017

SINUVA (mometasone furoate) sinus implant
Nasal polyps: For the treatment of nasal polyps in patients ≥ 18 years of age who have had ESS.
SINUVA Sinus Implant (Intersect ENT) was initially approved in 1987. In 2017, the SINUVA Sinus Implant was approved with a new dose (1350 μg mometasone furoate) under a New Drug Application (NDA 209310).

COMPENDIAL APPROVED OFF-LABELED USES: None
PROPEL Implant

The Propel sinus implant, the Propel Mini Steroid-Releasing Implant, and the Propel Contour devices were FDA approved through the premarket approval (PMA) process. The efficacy and safety of the PROPEL implant in adult patients with CRS undergoing FESS were reported in 3 prospective clinical trials that included 205 patients in the U.S. The ADVANCE II clinical trial is derived from and is supported by the ADVANCE clinical trial and CONSENSUS II pilot study.

Forwith et al. (2011) published the results of the ADVANCE study, a non-randomized, open label, multicenter, single-arm trial that evaluated the placement of the PROPEL implant in 50 patients with CRS who were scheduled to undergo ESS (n=50 patients/90 sinuses). The participants received bilateral or unilateral steroid-eluting sinus implant placement at the end of the ESS procedure. Oral or intranasal steroids were withheld during the first 60 days postoperatively. The patients received endoscopic follow-up to 60 days post-operation and patient-reported outcomes continued for 6 months (Sinonasal Outcomes Test 22, Rhinosinusitis Disability Index, and Total Nasal Symptom Scoring). Implants were successfully placed in all 90 sinuses. Three self-reported surveys reported statistically significant mean changes from baseline to day 60 and 6 months. Minimal degrees of inflammation and adhesions were observed at 1 month and mean inflammation scores were minimal at all time-points. No clinically significant changes in baseline IOP occurred despite the likely possibility of topical ophthalmic corticosteroids causing increased intraocular pressure (IOP) and ocular hypertension. The authors concluded that the stent appears to optimize surgical results by minimizing the occurrence of inflammation, adhesions, and polypoid tissue formation with negligible potential for ocular adverse effects. There is no evidence available to indicate whether this absorbable sinus stent maintains sinus patency long-term. The limitations noted for this study includes small its small sample size (n=50), short-term objective follow-up and lack of randomization.

Murr et al. 2011 reported the results of the CONSENSUS II trial which assessed the safety, effectiveness, and performance of the PROPEL device when used following FESS in patients with ethmoid CRS in 50 participants (n=50). Forty-three patients received the 23 mm PROPEL Sinus Implant and 7 patients received a shorter version. Patients and providers were blinded to which stent was placed via block randomization. All patients were placed on a 14-day course of antibiotics the day prior to surgery and no additional steroids (including nasal steroids) were allowed for the first month following surgery. The authors reported statistically significant reduction in ethmoid sinus inflammation compared to the control implant at Day 21 and statistically significant reductions in inflammation were also observed at Day 30 and Day 45. The SINUVA implant reduced the frequency of medial turbinate lateralization, the development of significant adhesions, and polypoid formation at day 30 compared to the control implant.

Marple et al. 2012 assessed the safety and effectiveness of the PROPEL device following bilateral ethmoidectomy for patients with CRS in ADVANCE II. The study is a prospective, randomized, double-blind, intra-patient controlled, multi-center trial involving 105 patients (n=105/210 sinuses). Participants were randomized to receive the treatment device in one ethmoid sinus or an identical device non-drug-eluting stent device in the contralateral ethmoid sinus. No additional steroids were administered 30 days after procedure. Primary safety endpoint of the absence of clinically significant increased ocular pressure through day 90 following the procedure was met. The drug-releasing implant noted a 29.0% relative reduction in post-operative interventions, a 52% decrease in lysis of adhesions, and relative reduction in frank polyposis was 44.9% compared to control sinuses with non-drug-releasing implants. Study limitations include intra-patient trial design where both sinuses had implants, one with steroid and the other without drug which does not allow for comparative of post-operative outcomes of the device with outcomes with standard of care.
A meta-analysis of the two trials conducted by Murr et al. and Marple et al. indicated a significant reduction in postoperative interventions (35%), adhesion and lysis (51%), and need for oral steroids in treated sinuses (40%) in the 143 patients that received a steroid-releasing implant compared to control sinuses that received a nondrug implant (Han et al. 2012).

PROPEL Mini and Contour

Smith et al. (2016) and Luong et al. (2017) conducted two identical trials of prospective, randomized, blinded design using an intra-patient control involving 160 adults diagnosed with CRS (80 patients in each trial). After successful bilateral frontal sinusotomy (using balloons and/or traditional instruments), each patient was randomized to receive 1 steroid-releasing implant (PROPEL Mini or PROPEL Contour) in 1 FSO (treatment side) while the contralateral FSO served as the control. A 10-day course of antibiotics was required 1 day prior to surgery. Intranasal steroid sprays starting at 14 days post-ESS were permitted, and oral steroids were prescribed, if warranted, by the investigator. No implant-related adverse events were reported in either study. Limitations of the studies include the intrapatient study design and the removal of implant at day 21 (potential of implant removal procedure causing additional trauma to the adjacent mucosa and affecting normal healing on the treatment side). The primary efficacy endpoint for both RCTs was reduction in the need for postoperative interventions (steroids or surgical) at 30 days based on a centralized, blinded video-endoscopy review by the same independent sinus surgeon.

- **Smith et al. (2016)** assessed the safety and efficacy of the PROPEL mini steroid-releasing implant following ESS (PROGRESS study). Each subject had one sinus ostia treated with the PROPEL Mini device and the other received standard care. At 30 days post-ESS, the PROPEL Mini provided a statistically significant relative reduction of 38.1% in the need for postoperative interventions compared to surgery alone by an independent reviewer. A statistically significant reduction in this measure at 30 days and 90 days were reported with a 55.6% reduction in the need for oral steroid interventions, 75% reduction in the need for surgical interventions, 16.7% reduction in inflammation score, 54.3% reduction in restenosis rate, and 32.2% greater diameter of FSO on treated sides compared to control at 30 days.

- **Luong et al. (2018)** evaluated the efficacy and safety of the PROPEL Contour implant in improving postoperative outcomes when placed in the FSO following ESS in adult patients with CRS. Similar to the study conducted by Smith et al. (2016), patients received bilateral frontal sinusotomies followed by unilateral and random placement of the steroid-releasing sinus implant. The primary outcome of the study was the reduction in need for postoperative interventions (defined as surgical intervention or oral steroid trial) at 30 days. The data showed that, based on video endoscopic evaluation by an independent, blinded reviewer, steroid-releasing implants significantly reduced the need for postoperative interventions to 11.5% compared with 32.8% by surgery alone. The authors concluded that the PROPEL Contour steroid-releasing sinus implant was safe and more effective in maintaining FSO patency and improving surgical outcomes compared with surgery alone in the setting where no other immediate postoperative corticosteroids were administered.

Singh et al. (2019) published an analysis that evaluated the effect of the PROPEL implants on frontal outcomes in various patient subgroups with chronic CRS using pooled data from of two RCTs (Smith et al. 2016 and Luong et al. 2017). Data through day 90 from the 2 studies were pooled and subgroup analyses were conducted. The subgroup analysis indicated improved outcomes of frontal sinus surgery for the implant group through 90 days, irrespective of asthma status, previous endoscopic sinus surgery, extent of surgery, extent of polyps, or Lund-Mackay computed tomography stage. Furthermore, the implants significantly reduced the restenosis/occlusion rate and the need for postoperative interventions when compared with surgery alone through 90 days.

Rizan et al. (2016) conducted a systematic review to evaluate the efficacy and safety of bioabsorbable steroid eluting intranasal devices. Seven studies met the inclusion criteria, including 5 randomized controlled trials (RCTs), that followed patients from 2 to 6 months after steroid-eluting intranasal devices. Six studies demonstrated stent efficacy with statistical significance. Steroid-eluting bioabsorbable intranasal devices were effective in reducing adhesion formation, polyp formation, inflammation, Lund-Kennedy scores, and perioperative sinus endoscopy scores. The devices improved patient-reported outcomes and 1olfaction while reducing postoperative interventions. According to the authors, there is limited data available and further studies are required to determine whether they are safe and effective adjuncts post ESS. The study conclude that additional studies are required to optimize the dosing regimen, compare devices, and provide long-term outcomes.
Huang et al. (2015), in a Cochrane systematic review, identified 21 trials (from the 159 retrieved) that studied the effects of steroid-eluting sinus stents compared to nonsteroid-eluting sinus stents, nasal packing or no treatment in adult patients with CRS who underwent FESS. However, these trials had to be excluded because they met some but not all of the inclusion criteria. Therefore, no trials could be included, and an evidence review of potential advantages or disadvantages of steroid-eluting stents was not possible. The authors were unable to provide evidence to establish whether steroid-eluting sinus stents have potential advantages and disadvantages for patients with CRS undergoing FESS. The systematic review concluded that high-quality RCTs comparing sinus stents with surgery alone to assess whether steroid-eluting sinus stents confer any beneficial effects (Cochrane 2015).

SINUVA (mometasone furoate) sinus implant

FDA approval of SINUVA was based on the results of two randomized, sham-controlled trials in adults with refractory CRSwNP who were candidates for repeat ESS (RESOLVE and RESOLVE II). The most common adverse effects that occurred in clinical trials in patients who received SINUVA implants were bronchitis, nasopharyngitis, otitis media, headache, presyncope, asthma, and epistaxis.

Han et al. (2014) reported results from RESOLVE, a sham-controlled randomized trial, to evaluate the safety and efficacy of a steroid-eluting nasal implant of mometasone furoate 1350 μg (SINUVA) in 100 adults (n=100) with recurrent nasal polyposis after ESS who are considered candidates for revised ESS. Enrolled participants also had bilateral total ethmoidectomy more than 3 months earlier and were randomly assigned to receive treatment with the SINUVA (n=53) or control (n=47). Follow-up duration was 90 days after SINUVA implants were bilaterally inserted into the ethmoid sinuses. Implants were removed on day 60 to eliminate the possibility of spontaneous dislodgement and unblinding. During the post-operative period, fewer SINUVA-treated patients required oral steroids for ethmoid obstruction (11% vs. 26%). At 90 days of follow-up, the SINUVA group had significantly better grades of bilateral polypos and less ethmoid obstruction compared to the control group. The treatment group experienced a 2-fold reduction in nasal obstruction and congestion score at day 90 compared to the control group and 53% of treated patients (compared to 23% of the controls) were no longer indicated for repeat ESS at 90 days. Statistically significant reduction in both polyp grade and ethmoid sinus obstruction reported from this trial supports the efficacy of the SINUVA implant for the treatment of patients with CRSwNP refractory to medical therapy and considered candidates for revision ESS. Limitations of this study include the single-blind trial design (treatment assignment was not blinded to the clinicians involved in endoscopic grading), the relatively small study size, and the short follow-up time.

Kern et al. (2018) conducted a multicenter, randomized, sham-controlled, double-blind trial evaluating the effectiveness and safety of the SINUVA sinus implant in adult patients with refractory CRSwNP. The RESOLVE II phase 3 RCT provided supporting safety and efficacy data for the FDA approval of SINUVA. The study included 300 adult patients with CRSwNP who had prior ESS but present with recurrent sinus obstruction were enrolled and all were considered candidates for revision sinus surgery. Patients were randomized to undergo bilateral placement of SINUVA implants or a sham procedure. Implants were removed within 60 days after insertion to allow for blinded grading at day 90. Both treatment and control groups were required to self-administer mometasone furoate nasal spray once daily during the 90-day follow-up. Co-primary efficacy endpoints were the change from baseline in nasal obstruction/congestion score (to day 30) and bilateral polyp grade (to day 90), as determined by an independent, blinded panel based on centralized, blinded video endoscopy review. SINUVA-treated patients had significantly lower nasal congestion/congestion scores (-0.80 and -0.56, respectively) and bilateral polyp grades (-0.56 vs. -0.15, respectively). In addition, there was a 61% reduction in the need for repeat sinus surgery at 90 days in the treatment group (37% in placebo-treated patients). The most common adverse effects of SINUVA reported from clinical trials were bronchitis, nasopharyngitis, otitis media, headache, presyncope, asthma, and epistaxis. Repeat dosing has not been studied.

Hayes Health Technology Assessment (HTA) assigned a ‘potential but unproven benefit’ rating for the use of the SINUVA sinus implant plus daily mometasone furoate intranasal spray in the treatment of patients with nasal polyps after ESS (Dec 2019). The report suggested that the SINUVA plus daily mometasone furoate intranasal spray may improve endoscopic and patient-reported outcomes after ESS and reduce the need for additional sinus surgery compared with sham procedure plus daily mometasone furoate intranasal spray. The HTA noted that the rating reflects low-quality evidence and uncertainty from a small amount of evidence and a lack of long-term follow-up to assess the durability of benefits.
National and Specialty Organizations

The American Academy of Otolaryngology-Head and Neck Surgery (AAO-HNS) published an evidence-based Clinical Practice Guideline for adult sinusitis recommending consideration of sinus surgery in patients with recurrent acute rhinosinusitis or CRS (Rosenfeld et al., 2015). There is no recommendation for the use of steroid-releasing implants after ESS for the treatment of nasal polyps.

The American Rhinologic Society (ARS) (2016) issued a position statement endorsing the use of drug-eluting implants in the sinus cavities, noting that there have been a number of well-controlled studies on steroid-eluting implants in the paranasal sinuses. According to the ARS, these studies have demonstrated improvement of patient outcomes by reducing polyp burden and inflammation, decreasing the need for systemic steroids, and delaying revision sinus surgery.

National Institute for Health and Care Excellence (NICE) issued an interventional procedures guidance on corticosteroid-eluting stent or spacer insertion during ESS to treat CRS. The guidance noted that current evidence regarding efficacy is limited; however, no major safety concerns was cited. Additional research on corticosteroid-eluting bioabsorbable stent or spacer insertion during ESS, specifically, controlled studies designed for between-patient (rather than within-patient) comparisons is recommended. The use of steroid-releasing implants after ESS for the treatment of nasal polyps in the guidance was not mentioned (NICE, 2016).

SUPPLEMENTAL INFORMATION

N/A

CODING & BILLING INFORMATION

CPT Code

<table>
<thead>
<tr>
<th>CPT</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31299</td>
<td>Unlisted procedure, accessory sinuses</td>
</tr>
</tbody>
</table>

HCPCS Codes

<table>
<thead>
<tr>
<th>HCPCS</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>J7402</td>
<td>Mometasone furoate sinus implant, (SINUVA), 10 micrograms.</td>
</tr>
<tr>
<td>S1091</td>
<td>Stent, non-coronary, temporary, with delivery system (PROPEL)</td>
</tr>
<tr>
<td></td>
<td>For unilateral placement of a drug-eluting sinus implant, report 1 Unit</td>
</tr>
<tr>
<td></td>
<td>For bilateral placement of a drug-eluting sinus implant, report 2 Units</td>
</tr>
</tbody>
</table>

AVAILABLE DOSAGE FORMS: Single-use, bioabsorbable implant, coated with a formulation of 1350 mcg mometasone furoate

CODING DISCLAIMER. Codes listed in this policy are for reference purposes only and may not be all-inclusive. Deleted codes and codes which are not effective at the time the service is rendered may not be eligible for reimbursement. Listing of a service or device code in this policy does guarantee coverage. Coverage is determined by the benefit document. Molina adheres to Current Procedural Terminology (CPT®), a registered trademark of the American Medical Association (AMA). All CPT codes and descriptions are copyrighted by the AMA; this information is included for informational purposes only. Providers and facilities are expected to utilize industry standard coding practices for all submissions. When improper billing and coding is not followed, Molina has the right to reject/deny the claim and recover claim payment(s). Due to changing industry practices, Molina reserves the right to revise this policy as needed.

APPROVAL HISTORY

4/13/2022 MCPC Policy revised: Changed title from SINUVA (mometasone furoate) to Sinus Implants (PROPEL, SINUVA) due to addition of PROPEL clinical evidence and coverage criteria. Updated and added references. IRO Peer Review.

6/7/2021 MCPC Policy reviewed and updated, no changes in coverage criteria, updated references.
REFERENCES

Government Agencies

Prescribing Information and Drug Compendia
1. Sinuva (mometasone furoate) sinus implant [prescribing information]. Montreal, Quebec, Canada: Theratechnologies Inc; April 2021.

Peer Reviewed Publications

PROPEL Implants

National and Specialty Organizations

Other Peer Reviewed Publications

Other Peer Reviewed and National Organization Publications (used in the development of this policy)

1. Rawl JW, McQuitty RA, Khan MH, et al. Comparison of steroid-releasing stents vs nonabsorbable packing as middle meatal spacers. Int Forum Allergy Rhinol. 2020; 10(3):328-333. The authors concluded that “This study showed that there was no significant improvement in postoperative outcomes with drug-eluting stents when compared to nonabsorbable packing.”

APPENDIX

Reserved for State specific information. Information includes, but is not limited to, State contract language, Medicaid criteria and other mandated criteria.